Obtenção de Ferro Gusa Ligado com Ni e Cr por Redução Carbotérmica em Forno a Arco de Corrente Contínua de Rejeitos de Nicaro da Produção de Níquel
Resumo
A existência de resíduos da produção de níquel (Ni) que podem ser aproveitados para a obtenção de materiais metalizados na produção de aço, aliada à insuficiente disponibilidade de coque, leva a pensar em processos alternativos sustentáveis, baseados em redutores mais acessíveis, como os carvões não coqueificáveis. O objetivo da pesquisa foi avaliar a obtenção de ferro-gusa ligado a Ni e Cr, através de redução carbotérmica em forno a arco de corrente contínua de rejeitos do processo de produção de Ni em Nicaro (Cuba), sem benefício, utilizando carvão antracito como redutor , visando a substituição de sucata no processo de obtenção de aços-acos ligados. Para tanto, foram realizados cálculos teóricos para obtenção de ferro gusa por redução carbotérmica para estabelecer a composição da carga e realizada validação experimental da produção de ferro gusa. Foram determinadas as quantidades dos produtos fundidos, seus rendimentos, a composição do ferro gusa obtido e as recuperações de Fe, Ni e Cr. O estudo mostra que é viável obter ferro gusa ligado com Ni e Cr através da redução carbotérmica em um forno a arco de corrente contínua de rejeitos de Nicaro sem aproveitamento, utilizando carvão antracito como redutor
Downloads
Referências
Anduze-Nogueira, A. E., Breda-Mourão, M., Takano, C., Martins dos Santos, D. (2010). Effect of slag composition on iron nuggets formation from carbon composite pellets. Materials Research, 13(2), 191-195.
Astuti, W., Andika, R., Nurjaman, F. (2018). Effect of basicity and reductant amount in the nickel pig iron (NPI) production from Indonesian limonite ore in submerged electric arc furnace (SAF). Mineral Processing and Technology International Conference 2017. IOP Conferences Series: Materials Science and Engineering, 285, 012023.
Begman, E. F., Cherebin, A. N., Pojvisnev A. N., Yusfín, Y. S. (1978). Metalurgia del arrabio. Moscú: Ediciones Metalurgia.
Belec Vario Lab. (2023). High spectrómeter for metal analysis [en línea] disponible en: http://koreainstech.co.kr/bbs/down/D%20Belec%20Vario-Lab.pdf [consulta: 3 agosto 2023].
Committee for Fundamental Metallurgy. (1981). Slag atlas. Dusseldorf: Verlag Stahleinsen M. B. H.
Cruz-Crespo, A., Perdomo-González, L., Quintana-Pucho, R., Scotti, A. (2019). Fundente para recargue por soldadura con arco sumergido a partir de ferrocromo-manganeso y escoria de la reducción simultánea de cromita y pirolusita. Revista Soldagem & Inspeção, 24, 1-10.
Cruz-Crespo, A., Quintana-Puchol, R., Perdomo-González, L., Gómez-Pérez, C., García-Sanchez, L. L., Jimenez-Vilesa, G., Cores-Sanchez, A. (2005). Carbothermic reduction of pirolusite to obtaing carbón-bearing ferromanganese and slag suited to the development of welding materials. Welding International, 19, 544-551.
Emre-Benkli, Y., Boyrazli, M., Lule Senoz, G. M., Cizmecioglu, Z. (2018). Investigation of reduction of magnetite based carbon composite pellets under semi-fusion conditions. Physicochemical Problem of Mineral Processing, 54(3), 621-628.
Ferreiro, Y. (2014). Obtención de lupias de arrabio a partir del tratamiento metalúrgico de las colas de Nicaro. Tesis doctoral. Moa: Instituto Superior Minero Metalúrgico.
Grobler, F., Minnitt, R. C. A. (1999). The increasing role of direct reduced iron in global steelmaking. The Journal of The South African Institute of Mining and Metallurgy, 2, 111-116.
Guo, X., Chengyan, Xu C., Wang, Y., Li, X., Sun, T. (2021). Recovery of nickel and iron from low–grade laterite ore and red mud using co-reduction roasting: Industrial-scale test. Physicochemical Problem of Mineral Processing, 57(3), 61-72.
Isnugroho, K., Birawidha, D. C. (2018). The production of pig iron from crushing plant waste using hot blast cupola. Alexandria Engineering Journal, 57, 427-433.
Liu, Sh., He, A., Wu, N., Zeng, J. (2019). Physical simulation of recovering cast iron from Bayer Red Mud. Procedia Manufacturing, 37, 443-449.
Małecki, S., Gargul, K., Warzecha, M., Stradomski, G., Hutny, A., Madej, M., Dobrzynski, M., Prajsnar, R., Krawiec, G. (2021). High-Performance method of recovery of metals from EAF dust – processing without solid waste. Materials, 14, 6061.
Nowacki, K., Macia, T., Lis, T. (2021). Recovery of iron from mill scale by reduction with carbon monoxide. Minerals, 11 (5), 529, 1-13.
Ortiz, J. (2015). Obtención de un producto prerreducido para la producción de arrabio con níquel (nickel pig iron) a partir del tratamiento de los escombros lateríticos de Mina Martí de Nicaro. Tesis doctoral. Moa: Instituto Superior Minero Metalúrgico.
Perdomo-González, L., Quintana-Puchol, R., Cruz-Crespo, A., Castellanos-Estupiñán, L., García-Sánchez, L., Formoso-Prego, A., Cores-Sánchez, A. (2003). Empleo de cromitas refractarias para la obtención de fundentes aglomerados utilizados en la soldadura automática por arco sumergido (SAW). Revista de Metalurgia, 39, 268-278.
Perdomo-González, L., Quintana-Puchol, R., Cruz-Crespo, A., Gómez-Pérez, C. R. (2017). Obtaining of components of fluxes for submerged arc welding from the carbothermic reduction of chromite refractory. Revista Técnica de la Facultad de Ingeniería de la Universidad de Zulia, 40(1), 42-51.
Perdomo-González, L., Quintana-Puchol, R., Cruz-Crespo, A., Gómez-Pérez, C. R. (2018). Obtención en horno eléctrico de arco de aleaciones del sistema Fe-Mn-Cr-C y escorias destinadas al desarrollo de consumibles de soldadura. Minería y Geología, 33 (1), 92-107.
Permatasari, N. V., Warsito, B., Kawigraha, A., Ikhwani, N. (2021). Iron recovery from residue of lateritic nickel leaching industry. E3S Web of Conferences, 317, 04033.
Quintana-Puchol, R., Perdomo-González, L., Cruz-Crespo, L., Gómez-Rodríguez, L., García-Sánchez, L. L., Cerpa-Naranjo, A., Cores-Sánchez, A. (2004). Obtención simultánea de ferroaleación multicomponente y escoria a partir de arenas negras, para el desarrollo de consumibles de soldadura por arco eléctrico. Revista de Metalurgia, 40, 294-303.
Quintana-Puchol, R., Perdomo-González, L., Gómez-Pérez, C., Cruz-Crespo, A., Rodríguez-Pérez, M., Castellanos, G. (2002). Procedimiento de obtención simultánea de escoria esponjosa y aleaciones de cromo destinadas a la confección de fundentes aglomerados para la Soldadura Automática bajo fundente (SAW). Patente No. C22C 33/00. C22C 19/05. La Habana: Oficina Cubana de la Propiedad Intelectual.
Riss, A., Khodorovsky, Y. (1975). Production of ferroalloys. Moscow: Foreign Languages Publishing House.
Seok, C. W., Lee, K. H., Son, W. Y., Park, J. K., Kang, Y. (2021). Study on the refining conditions of nickel pig iron for high purity nickel matte production. Proceedings of the 16th International Ferro-Alloys Congress (INFACON XVI). Trondheim: SINTEF/NTNU/FFF, 1-7.
Shidqi-Khaerudini, D., Ilham Chanif, I., Dita Rama-Insiyanda, D., Fredina Destyorini, F., Alva, S., Pramono, A. (2019). Preparation and characterization of mill scale industrial waste reduced by biomass‑based carbon. Journal of Sustainable Metallurgy, 5(4), 510-518.
Takao Harada, T., Tsuge, O., Kobayashi, I, Tanaka, H., Uemura, H. (2005). The development of new iron making processes. Kobelco Technology Review, 26, 92-97.
Von-Bogdandy, L., Engell, H. J. (1971). The reduction of iron ores. Berlin: Springer-Verlag, Berlin Heidelberg GmbH.
Walburga-Keglevich, P. J., Heck, N. C., Faria-Vilela, A. C. (2017). EAF dust: an overview on the influences of physical, chemical and minera features in its recycling and waste incorporation routes. Journal of Materials Research and Technology, 6(2), 194-202.
Yildirim, H., Morcali, H., Turan, A., Yucel, O. (2013). Nickel pig iron production from lateritic nickel ores. Proceedings of the Thierteenth International Ferroalloys Congress. Almaty: Ferronickel Production and Operation, 238-244.
Yusfín, Y. S., Danshin, V. V., Pashkov, N. F., Pitateliev, V. A. (1982). Teoría de la metalización de minerals de hierro. Moscú: Ediciones Metalurgia.
Zemri, C., Bachir-Bouiadjra, M. (2020). Comparison between physical–mechanical properties of mortar made with Portland cement (CEMI) and Slag cement (CEMIII) subjected to elevated temperature. Case Studies in Construction Material, 12, 1-12, e00339.
Direitos de Autor (c) 2023 Amado Cruz-Crespo, Jesús Ortiz-Bárcenas, Lorenzo Perdomo-González, Rafael Quintana-Puchol, josé Pons-Herrera, Gualberto Rosales-Martín
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0