Obtención de Arrabio Aleado con Ni y Cr por Reducción Carbotérmica en un Horno de Arco de Corriente Continua de Colas de Nicaro de la Producción de Níquel
Resumen
La existencia de residuales de la producción de níquel (Ni) que pueden ser usados para obtener materiales metalizados en la producción de acero, junto a la insuficiente disponibilidad de coque, lleva a pensar en procesos alternativos sustentables, basados en reductores de mayor accesibilidad, como carbones no coquificables. El objetivo de la investigación fue evaluar la obtención de arrabio aleado con Ni y Cr, mediante la reducción carbotérmica en horno de arco de corriente continua de colas del proceso de producción de Ni en Nicaro (Cuba), sin beneficiar, empleando carbón antracita como reductor, con vistas a la sustitución de chatarra en el proceso de obtención de aceros aleados. Para ello, se realizaron cálculos teóricos para la obtención de arrabio por reducción carbotérmica para establecer la composición de la carga y se realizó la validación experimental de la obtención del arrabio. Se determinaron las cantidades de los productos de colada, sus rendimientos, la composición del arrabio obtenido y los recobrados de Fe, Ni y Cr. El estudio muestra que es viable la obtención de arrabio aleado con Ni y Cr mediante la reducción carbotérmica en horno de arco de corriente continua de colas de Nicaro sin beneficiar, empleando carbón antracita como reductor
Descargas
Citas
Anduze-Nogueira, A. E., Breda-Mourão, M., Takano, C., Martins dos Santos, D. (2010). Effect of slag composition on iron nuggets formation from carbon composite pellets. Materials Research, 13(2), 191-195.
Astuti, W., Andika, R., Nurjaman, F. (2018). Effect of basicity and reductant amount in the nickel pig iron (NPI) production from Indonesian limonite ore in submerged electric arc furnace (SAF). Mineral Processing and Technology International Conference 2017. IOP Conferences Series: Materials Science and Engineering, 285, 012023.
Begman, E. F., Cherebin, A. N., Pojvisnev A. N., Yusfín, Y. S. (1978). Metalurgia del arrabio. Moscú: Ediciones Metalurgia.
Belec Vario Lab. (2023). High spectrómeter for metal analysis [en línea] disponible en: http://koreainstech.co.kr/bbs/down/D%20Belec%20Vario-Lab.pdf [consulta: 3 agosto 2023].
Committee for Fundamental Metallurgy. (1981). Slag atlas. Dusseldorf: Verlag Stahleinsen M. B. H.
Cruz-Crespo, A., Perdomo-González, L., Quintana-Pucho, R., Scotti, A. (2019). Fundente para recargue por soldadura con arco sumergido a partir de ferrocromo-manganeso y escoria de la reducción simultánea de cromita y pirolusita. Revista Soldagem & Inspeção, 24, 1-10.
Cruz-Crespo, A., Quintana-Puchol, R., Perdomo-González, L., Gómez-Pérez, C., García-Sanchez, L. L., Jimenez-Vilesa, G., Cores-Sanchez, A. (2005). Carbothermic reduction of pirolusite to obtaing carbón-bearing ferromanganese and slag suited to the development of welding materials. Welding International, 19, 544-551.
Emre-Benkli, Y., Boyrazli, M., Lule Senoz, G. M., Cizmecioglu, Z. (2018). Investigation of reduction of magnetite based carbon composite pellets under semi-fusion conditions. Physicochemical Problem of Mineral Processing, 54(3), 621-628.
Ferreiro, Y. (2014). Obtención de lupias de arrabio a partir del tratamiento metalúrgico de las colas de Nicaro. Tesis doctoral. Moa: Instituto Superior Minero Metalúrgico.
Grobler, F., Minnitt, R. C. A. (1999). The increasing role of direct reduced iron in global steelmaking. The Journal of The South African Institute of Mining and Metallurgy, 2, 111-116.
Guo, X., Chengyan, Xu C., Wang, Y., Li, X., Sun, T. (2021). Recovery of nickel and iron from low–grade laterite ore and red mud using co-reduction roasting: Industrial-scale test. Physicochemical Problem of Mineral Processing, 57(3), 61-72.
Isnugroho, K., Birawidha, D. C. (2018). The production of pig iron from crushing plant waste using hot blast cupola. Alexandria Engineering Journal, 57, 427-433.
Liu, Sh., He, A., Wu, N., Zeng, J. (2019). Physical simulation of recovering cast iron from Bayer Red Mud. Procedia Manufacturing, 37, 443-449.
Małecki, S., Gargul, K., Warzecha, M., Stradomski, G., Hutny, A., Madej, M., Dobrzynski, M., Prajsnar, R., Krawiec, G. (2021). High-Performance method of recovery of metals from EAF dust – processing without solid waste. Materials, 14, 6061.
Nowacki, K., Macia, T., Lis, T. (2021). Recovery of iron from mill scale by reduction with carbon monoxide. Minerals, 11 (5), 529, 1-13.
Ortiz, J. (2015). Obtención de un producto prerreducido para la producción de arrabio con níquel (nickel pig iron) a partir del tratamiento de los escombros lateríticos de Mina Martí de Nicaro. Tesis doctoral. Moa: Instituto Superior Minero Metalúrgico.
Perdomo-González, L., Quintana-Puchol, R., Cruz-Crespo, A., Castellanos-Estupiñán, L., García-Sánchez, L., Formoso-Prego, A., Cores-Sánchez, A. (2003). Empleo de cromitas refractarias para la obtención de fundentes aglomerados utilizados en la soldadura automática por arco sumergido (SAW). Revista de Metalurgia, 39, 268-278.
Perdomo-González, L., Quintana-Puchol, R., Cruz-Crespo, A., Gómez-Pérez, C. R. (2017). Obtaining of components of fluxes for submerged arc welding from the carbothermic reduction of chromite refractory. Revista Técnica de la Facultad de Ingeniería de la Universidad de Zulia, 40(1), 42-51.
Perdomo-González, L., Quintana-Puchol, R., Cruz-Crespo, A., Gómez-Pérez, C. R. (2018). Obtención en horno eléctrico de arco de aleaciones del sistema Fe-Mn-Cr-C y escorias destinadas al desarrollo de consumibles de soldadura. Minería y Geología, 33 (1), 92-107.
Permatasari, N. V., Warsito, B., Kawigraha, A., Ikhwani, N. (2021). Iron recovery from residue of lateritic nickel leaching industry. E3S Web of Conferences, 317, 04033.
Quintana-Puchol, R., Perdomo-González, L., Cruz-Crespo, L., Gómez-Rodríguez, L., García-Sánchez, L. L., Cerpa-Naranjo, A., Cores-Sánchez, A. (2004). Obtención simultánea de ferroaleación multicomponente y escoria a partir de arenas negras, para el desarrollo de consumibles de soldadura por arco eléctrico. Revista de Metalurgia, 40, 294-303.
Quintana-Puchol, R., Perdomo-González, L., Gómez-Pérez, C., Cruz-Crespo, A., Rodríguez-Pérez, M., Castellanos, G. (2002). Procedimiento de obtención simultánea de escoria esponjosa y aleaciones de cromo destinadas a la confección de fundentes aglomerados para la Soldadura Automática bajo fundente (SAW). Patente No. C22C 33/00. C22C 19/05. La Habana: Oficina Cubana de la Propiedad Intelectual.
Riss, A., Khodorovsky, Y. (1975). Production of ferroalloys. Moscow: Foreign Languages Publishing House.
Seok, C. W., Lee, K. H., Son, W. Y., Park, J. K., Kang, Y. (2021). Study on the refining conditions of nickel pig iron for high purity nickel matte production. Proceedings of the 16th International Ferro-Alloys Congress (INFACON XVI). Trondheim: SINTEF/NTNU/FFF, 1-7.
Shidqi-Khaerudini, D., Ilham Chanif, I., Dita Rama-Insiyanda, D., Fredina Destyorini, F., Alva, S., Pramono, A. (2019). Preparation and characterization of mill scale industrial waste reduced by biomass‑based carbon. Journal of Sustainable Metallurgy, 5(4), 510-518.
Takao Harada, T., Tsuge, O., Kobayashi, I, Tanaka, H., Uemura, H. (2005). The development of new iron making processes. Kobelco Technology Review, 26, 92-97.
Von-Bogdandy, L., Engell, H. J. (1971). The reduction of iron ores. Berlin: Springer-Verlag, Berlin Heidelberg GmbH.
Walburga-Keglevich, P. J., Heck, N. C., Faria-Vilela, A. C. (2017). EAF dust: an overview on the influences of physical, chemical and minera features in its recycling and waste incorporation routes. Journal of Materials Research and Technology, 6(2), 194-202.
Yildirim, H., Morcali, H., Turan, A., Yucel, O. (2013). Nickel pig iron production from lateritic nickel ores. Proceedings of the Thierteenth International Ferroalloys Congress. Almaty: Ferronickel Production and Operation, 238-244.
Yusfín, Y. S., Danshin, V. V., Pashkov, N. F., Pitateliev, V. A. (1982). Teoría de la metalización de minerals de hierro. Moscú: Ediciones Metalurgia.
Zemri, C., Bachir-Bouiadjra, M. (2020). Comparison between physical–mechanical properties of mortar made with Portland cement (CEMI) and Slag cement (CEMIII) subjected to elevated temperature. Case Studies in Construction Material, 12, 1-12, e00339.
Derechos de autor 2023 Amado Cruz-Crespo, Jesús Ortiz-Bárcenas, Lorenzo Perdomo-González, Rafael Quintana-Puchol, josé Pons-Herrera, Gualberto Rosales-Martín
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0