Characterization of the tracrARN-DRARN genetic complex associated with the CRISPR-Cas9 system of the phytosymbiont Acholeplasma palmae: biotechnological interest

Keywords: molecular docking, bioinformatics, mycoplasma, transactivator

Abstract

The CRISPR-Cas9 technology used in plant biotechnology is based on the use of Cas9 endonucleases to generate precise cuts in the genome, and a duplex consisting of a trans-activating CRISPR RNA (tracrRNA) and a CRISPR RNA (DRRNA) which are precursors of guide RNA (sgRNA) commercially redesigned (sgRNA-Cas9) to guide gene cleavage. Most of these tools come from clinical bacteria. However, there are several CRISPR-Cas9 systems in environmental microorganisms such as phytoendosymbionts of plants of the genus Acholeplasma. But the exploitation of these systems more compatible with plants requires using bioinformatics tools for prediction and study. We identified and characterized the elements associated with the duplex in the genome of A. palmae. For this, the protein information was obtained from the Protein Data Bank and the genomics from GenBank/NCBI. The CRISPR system was studied with the CRISPRfinder software. Alignment algorithms and NUPACK software were used to identify the tracrRNA and DRRNA modules, together with various computational software for genetic, structural and biophysical characterization. A CRISPR-Cas system was found in A. palmae with type II-C characteristics, as well as a thermodynamically very stable duplex, with flexible regions, exhibiting a docking power with Cas9 thermodynamically favored. These results are desirable in programmable gene editing systems and show the possibility of exploring native molecular tools in environmental microorganisms applicable to the genetic manipulation of plants, as more research is carried out. This study represents the first report on the thermodynamic stability and molecular docking of elements associated with the tracrRNA-DRRNA duplex in the phytosymbiont A. palmae.

Downloads

Download data is not yet available.

References

Bae, S., Park, J., and Kim, J. S. 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics, 30(10),1473-1475.
Baliga, P., M. Shekar and M. Nagarajappa. 2018. Investigation of direct repeats, spacers and proteins associated with clustered regularly interspaced short palindromic repeat (CRISPR) system of Vibrio parahaemolyticus. Mol Genet Genom, 294(1),253–262.
Belhaj, K., A. Chaparro-Garcia, S. Kamoun, N. Patron and V. Nekrasov. 2015. Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol., 32(1),76–84.
Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Ostell, J., Pruitt, K. D., and Sayers, E. W. 2018. GenBank. Nucleic Acids Res., 46(D1),D41-D47.
Bumgardner, E., W. Kittichotirat, R. Bumgarner and P. Lawrence. 2015. Comparative genomic analysis of seven Mycoplasma hyosynoviae strains. Microbiologyopen, 4(2),343-359.
Briner, A, P. Donohoue, A. Gomaa, K. Selle, E. Slorach, C. Nye and R. Barrangou. 2014. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol. Cell, 56(2),333-339.
Briner, A., E. Henriksen and R. Barrangou. 2016. Prediction and validation of native and engineered Cas9 guide sequences. Cold Spring Harb. Protoc., 2016(7),pdb-prot086785.
Chylinski, K., A. Le Rhun and E. Charpentier. 2013. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biology, 10(5),726-737.
Chyou, T. and C. Brown. 2019. Prediction and diversity of tracrRNAs from type II CRISPR-Cas systems. RNA Biology, 16(4),423-434.
Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Néron, B., Rocha, E., Vergnaud, G., Gautheret, D. and Pourcel, C. 2018. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res., 46(W1),W246-W251.
De Vos, W. 2017. Microbe Profile: Akkermansia muciniphila: a conserved intestinal symbiont that acts as the gatekeeper of our mucosa. Microbiology, 165(5),646-648.
Dupuis, N., E. Holmstrom and D. Nesbitt, D. 2014. Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. Proc. Natl. Acad. Sci. U. S. A., 111(23),8464-8469.
Høyland-Kroghsbo, N., K. Muñoz and B. Bassler, B. 2018. Temperature, by controlling growth rate, regulates CRISPR-Cas activity in Pseudomonas aeruginosa. mBio, 9(6),e02184-18.
Ipoutcha, T., Tsarmpopoulos, I., Talenton, V., Gaspin, C., Moisan, A., Walker, C. A., Brownlie, J., Blanchard, A., Thebault, P. and Sirand-Pugnet, P. 2019. Multiple origins and specific evolution of CRISPR/Cas9 systems in minimal bacteria (Mollicutes). Front. Microbiol., 10(2701),1-14.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096),816-821.
Ka, D., Jang, D. M., Han, B. W., Bae, E. 2018. Molecular organization of the type II-A CRISPR adaptation module and its interaction with Cas9 via Csn2. Nucleic Acids Res., 46(18),9805-9815.
Kaushik, I., S. Ramachanrdan and S. Srivastava. 2019. CRISPR-Cas9: A multifaceted therapeutic strategy for cancer treatment. Semin. Cell Dev. Biol., 96(1),4-12.
Kunin, V., R. Sorek and P. Hugenholtz. 2007. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol., 8(4),R61.
Kube, M., C. Siewert, A. Migdoll, B. Duduk, S. Holz, R. Rabus and R. Reinhardt. 2014. Analysis of the Complete Genomes of Acholeplasma brassicae, A. palmae and A. laidlawii and their comparison to the obligate parasites from ‘Candidatus Phytoplasma'. J. Mol. Microbiol. Biotechnol., 24(1),19-36.
Lau, V. and J. Davie. 2017. The discovery and development of the CRISPR system in applications in genome manipulation. Biochem. Cell Biol., 95(2),203–210.
Makarova, K., D. Haft, R. Barrangou, S. Brouns, E. Charpentier, P. Horvath and J. Van Der Oost. 2011. Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Microbiol., 9(6),467-477.
Mirabelli, P., L. Coppola and M. Salvatore. 2019. Cancer Cell Lines Are Useful Model Systems for Medical Research. Cancer, 11(8),1098-1116.
Negahdaripour, M., N. Nezafat, N. Hajighahramani, S. Rahmatabadi and Y. Ghasemi. 2017. Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools. Infection, Genet. Evol., 54(2),355-373.
Rodrigues, S. D., Karimi, M., Impens, L., Van Lerberge, E., Coussens, G., Aesaert, S., Rombaut, D., Holtappels, D., Ibrahim, H., Van Montagu, M., Wagemans, J., Jacobs, T., De Coninck, B. and Pauwels, L. 2021. Efficient CRISPR-mediated base editing in Agrobacterium spp. Proc. Natl. Acad. Sci. U. S. A., 118(2),e2013338118.
São, C. 2018. Engineering of phage-derived lytic enzymes: Improving their potential as antimicrobials. Antibiotics, 7(2),29-32.
Shen, J., D. Zhao, R. Sasik, and J. Luebeck. 2017. Combinatorial CRISPR–Cas9 screens for de novo mapping of genetic interactions. Nat. Methods, 14(6),573-578.
Tully, J., R. Whitcomb, D. Rose, J. Bove, P. Carle, N. Somerson and S. Eden-Green. 1994. Acholeplasma brassicae sp. nov. and Acholeplasma palmae sp. nov., two non-sterol-requiring mollicutes from plant surfaces. Int. J. Syst. Evol. Microbiol., 44(4),680-684.
Thomsen, R. and M. Christensen. 2006. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 49(11),3315-3321.
Westra, E., A. Buckling and P. Fineran. 2014. CRISPR–Cas systems: beyond adaptive immunity. Nat. Rev. Microbiol., 12(5),317-326.
Yan, Y., D. Zhang, P. Zhou, B. Li, and S. Huang. 2017. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res., 45(1),365-373.
Zhao, X., Z. Yu and Z. Xu. 2018. Study the features of 57 confirmed CRISPR loci in 38 strains of Staphylococcus aureus. Front. Microbiol., 9(1591),1-20.
Zhang, Y., A. Malzahn, S. Sretenovic and Y. Qi. 2019. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants, 5(1),778-794.
Published
2021-10-01
How to Cite
Moncayo, L., Castro, A., Arcos, D., Centanaro, P., Vaca, D., Maldonado, C., Perez, A., Lossada, C., & González-Paz, L. (2021). Characterization of the tracrARN-DRARN genetic complex associated with the CRISPR-Cas9 system of the phytosymbiont Acholeplasma palmae: biotechnological interest . Revista De La Facultad De Agronomía De La Universidad Del Zulia, 38(4), 970-992. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/36805
Section
Crop Production