An alternative approach for the model based control of a nonlinear dynamic system
Abstract
This paper presents an alternative approach for the model-based control of the ";ball and beam";, a multivariable nonlinear dynamic system, which is a benchmark for testing new control algorithms. The proposed strategy uses two neural networks and a polynomial interpolating scheme to construct the desired value trajectory. The performance of this strategy significantly outperforms the corresponding to the classic linear quadratic regulator. Both strategies were implemented on computer simulations of the system, and their performance was evaluated using the following criteria: rise time, settling time, overshoot percentage, integral of the error's absolute value, robustness and design easiness. The control strategies were tested under step and sinusoidal changes of the reference value.
Downloads
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0