CFD Analysis about the Influence of Attack Angle on the Power Coefficient of Gorlov Helical Turbines

  • Gustavo José Marturet Pérez Departamento de Mecánica, Universidad Politécnica Territorial del Estado Bolívar (UPTEB), Ciudad Bolívar, 8001, Bolívar-Venezuela https://orcid.org/0000-0002-4578-8810
  • Gustavo Elías Marturet García Universidad de Los Andes (ULA), Venezuela. Facultad de Ciencias Económicas y Sociales. Economía. Mérida, 5101, Venezuela https://orcid.org/0000-0001-6506-2091
  • Rafael Antonio Guerra Silva Industrial Technology and Packaging, Orfalea College of Business. California Polytechnic State University. 1 Grand Ave., Bldg. 3. San Luis Obispo, CA 93407, United States https://orcid.org/0000-0002-3438-4335
  • María Josefina Torres Departamento de Ingeniería Mecánica, Universidad Nacional Experimental del Táchira, Av. Universidad, Paramillo, San Cristóbal, Táchira, Venezuela, CP 5001 https://orcid.org/0000-0002-9813-0326
  • Carlos Francisco Torres Monzón Departamento de Ciencias Térmicas, Universidad de Los Andes (ULA), Escuela de Ingeniería Mecánica. Facultad de Ingeniería, Mérida, 5101, Venezuela https://orcid.org/0000-0002-8506-5967
Keywords: computational fluids dynamic, Gorlov helical turbines, power coefficient

Abstract

The Gorlov helical turbines are used for the generation of electric energy starting from kinetic energy from the rivers and marine currents. This research dealt with the analysis of the influence of attack angle of the blades profiles on the power coefficient of Gorlov helical turbines, and doing use of simulation on computational fluids dynamics (CFD). The building of the computational domain was done starting from the turbine diameter. For the turbulence model as mathematic model was used the SST k- . A sensibility study for the meshing of the domains indicated as enough meshes of near 65000 nodes for the calculations of the torque. The blades were rotated in attack angles of ±12, ± 9, ±6 y ±3º; subsequently the power coefficients or turbine performance were evaluated in every situation. It was determined the angle of attack of the blades profiles of helical turbines on the coefficient of power as an upgrade of its performance. The results showed variations in turbine performance as the attack angle changed; 6º being the attack angle with which the greatest performance was obtained.

Downloads

Download data is not yet available.

Author Biographies

Gustavo José Marturet Pérez, Departamento de Mecánica, Universidad Politécnica Territorial del Estado Bolívar (UPTEB), Ciudad Bolívar, 8001, Bolívar-Venezuela

Gustavo José Marturet Pérez is Associated Professor on the Mechanic Deparment of the Universidad Politécnica Territoral del Estado Bolívar (UPTEB). Earned the Mechanical Engineer grade from the Universidad de Los Andes, Mérida-Venezuela, Master in Mechanical Engineering from UNEXPO, Vice-rectorate Puerto Ordaz. He is Doctor in Engineering Sciences. His research fields are: Computational Fluids Dynamic (CFD), Modeling, Egineering Simulation and Optimization, Numeric models applicable to hydrokinetic turbines and Fluids Mechanic among others. Can be contacted by: marturetg@mail.com  and gjmarturetp.doctorando@unexpo.edu.ve   Cellphone: +58 416-925769

Gustavo Elías Marturet García, Universidad de Los Andes (ULA), Venezuela. Facultad de Ciencias Económicas y Sociales. Economía. Mérida, 5101, Venezuela

Gustavo Elías Marturet García is an economist from the Universidad de Los Andes Mérida-Venezuela. His research fields are: Econometrics, Statistic Models, and lineal regression, R software modeling, and Excel data management among others. He does Human Rights activities.

Rafael Antonio Guerra Silva, Industrial Technology and Packaging, Orfalea College of Business. California Polytechnic State University. 1 Grand Ave., Bldg. 3. San Luis Obispo, CA 93407, United States

Rafael Guerra is an Assistant Professor in Industrial Technology (Cal Poly San Luis Obispo). Before joining Cal Poly, Dr. Guerra was an Assistant Professor at the Pontifical Catholic University of Valparaíso (Chile), and Associate Professor at Central University of Venezuela. Dr. Guerra received his doctoral degree at the Dresden University of Technology (Germany). He earned his B.S. and M.S. in Mechanical Engineering from Central University of Venezuela. During his academic career, Dr. Guerra has served as a lecturer in manufacturing and automation. He has authored various research papers in peer reviewed journals in the fields of additive manufacturing, metal machining, and the application of numerical modeling and computational intelligence in engineering. He has also experience as industry consultant, working for companies in the food and beverages, packaging and mining sectors

María Josefina Torres, Departamento de Ingeniería Mecánica, Universidad Nacional Experimental del Táchira, Av. Universidad, Paramillo, San Cristóbal, Táchira, Venezuela, CP 5001

María Josefina Torres is a retired Full Professor from the National Experimental University of Táchira (UNET), Venezuela. Until February 2023, she was an Assistant Professor at the School of Mechanical Engineering of the Pontificia Universidad Católica de Valparaíso, Chile, and UNET from 1994 to 2018. She obtained her Ph.D. at the Polytechnic University of Madrid, Spain, and her B.S. and M.S in Engineering Mechanics at UNET. Throughout her academic career, Dr. Torres has worked as an undergraduate and graduate teacher in the area of thermofluids and fluid flow modeling, she has published various works at international conferences and in scientific journals in areas of numerical modeling of flows and thermal sciences. He has also developed academic management tasks and technical advice on fluid transportation to companies in the fishing area

Carlos Francisco Torres Monzón, Departamento de Ciencias Térmicas, Universidad de Los Andes (ULA), Escuela de Ingeniería Mecánica. Facultad de Ingeniería, Mérida, 5101, Venezuela

Doctor Carlos Francisco Torres Monzón is Titular Professor from Universidad de Los Andes, Mechanic Engineering School, Thermic Sciences Department. His research fields are: Computational Fluids Dynamic (CFD), Turbulence Models, Multiphase Flows, Mathematic Modeling, Thermic Engineering, Engineering and Oil, Fluids Mechanic and Heat Transfer Experimentation among others

References

ANSYS. (2009). Ansys fluent 12.0. Theory guide. Canonsburg: ANSYS Inc.
Al-Dabbagh, M. A, Yuce, M. I. (2919). Numerical evaluation of helical hydrokinetic turbines with different solidities under different flow conditions. International Journal of Environmental Science and Technology, 16(8), 4001-4012.
Barrera, E., Aguirre, F., Vargas, S., Martínez, E. D. (2018). Influencia del y plus en el valor del esfuerzo cortante de pared a través simulaciones empleando dinámica computacional de fluidos. Información Tecnológica, 29(4), 291-302.
Bachant, P., Wosnik, M. (2015). Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency. Renewable Energy, 74, 318-325.
Durrani, N., Hameed, H., Rahman H., Chaudhry, S. (2011). A detailed aerodynamic design and analysis of a 2-D vertical axis wind turbine using sliding mesh in CFD. 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. Orlando: AIAA, 541.
Jain S., Saha, U. K. (2019). On the influence of blade thickness-to-chord ratio on dynamic stall phenomenon in H-type Darrieus wind rotors. International Journal of Energy Research, 218, 113024.
Lanzafame, R., Mauro, S., Messina, M. (2014). 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model. Energy Procedia, 45, 131-140.
Marturet G., Gutiérrez E., Caraballo, S. (2017). Influencia de parámetros dimensionales en potenciales energéticos de turbinas hidrocinéticas Gorlov. Novo Tékhne, 3(2), 19-31.
Marturet, G., Gutiérrez, E., Caraballo, S. (2017). Valoración de modelos de turbulencia en dominios computacionales para simulación de una turbina helicoidal. Revista Científica UNET, 28(1), 5-18.
Marturet, G., Torres, C. (2012). Modelación numérica en flujo estable para una turbina Gorlov. Avances en simulación computacional y modelado numérico. XI Congreso CIMENICS: avances en simulación computacional y modelado numérico. La Asunción: Sociedad Venezolana de Métodos Numéricos en Ingeniería, 1-6.
Marturet, G., (2019). Modelación fluidodinámica de turbinas Gorlov para la mejora de su rendimiento. Tesis doctoral. Ciudad Guayana: Universidad Nacional Experimental Politécnica Antonio José de Sucre (UXEXPO).

Muratoğlu A., Demir, M. S. (2020). Investigating the effect of geometrical and dynamic parameters on the performance of Darrieus turbines: a numerical optimization approach via QBlade algorithm. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(1), 413-426.
Pineda-Ortiz, J. C., Chica-Arrieta, E. L. (2020). Métodos numéricos para el desarrollo de una turbina hidrocinética tipo Gorlov. Revista UIS Ingenierías, 19(3), 187-206.
Saini, G., Saini, R. P. (2019). A review on technology, configurations, and performance of cross‐flow hydrokinetic turbines. International Journal of Energy Research, 43(13), 6639-6679.
Satrio, D., Utama, I., Pria, K. A., Mukhtasor. (2018). The influence of time step setting on the CFD simulation result of vertical axis tidal current turbine. Journal of Mechanical Engineering and Sciences, 12(1), 3399-3409.
Talukdar, P. K., Kulkarni V., Das A. K., Dwivedy, S. A., Kakoty, S. K., Mahanta, P., Saha, U. K. (2017). In-situ experiments to estimate the performance characteristics of a double-step helical-bladed hydrokinetic turbine. Proceedings of the ASME 2017 Gas Turbine India Conference (GTINDIA 2017). Bangalore: American Society of Mechanical Engineers (ASME), 4572.
Yilmaz, A., Boer, O., Kirkpinar, A., Aktas, F., Turgut, O. (2019). The effect of the number of turbine blade on Gorlov turbine performance. Proceedings of 4th International Conference on Innovations and Emerging Trends in Mechanical Engineering (IIETME 2019). Bangalore: Nagarjuna College of Engineering & Technology, P15.
Published
2023-09-28
How to Cite
Marturet Pérez, G. J., Marturet García, G. E., Guerra Silva, R. A., Torres, M. J. and Torres Monzón, C. F. (2023) “CFD Analysis about the Influence of Attack Angle on the Power Coefficient of Gorlov Helical Turbines”, Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 46(1), p. e234609. doi: 10.22209/rt.v46a09.
Section
Artículos de Investigación