Evaluation of the Isomerization of α-Pinene Epoxide to Campholenic Aldehyde Using a Catalyst Obtained from Orange Peels (Citrus sinensis)

Keywords: carbon, mesoporous, terpenes, waste, XRD

Abstract

Orange peels (Citrus sinensis) are an abundant lignocellulosic residue that can be used as a carbon source to obtain solids with catalytic potential in the transformation of terpenes and their oxides into value-added products. This research seeks to evaluate the isomerization of α-pinene epoxide to campholenic aldehyde using a catalyst obtained from orange peels. The material OAC-Zn was obtained by activation of orange peel with ZnSO4.7H2O followed by thermal treatment at 500 °C; an additional solid was obtained from orange peel by pyrolysis at 500 °C (OC-500). XRD revealed the presence of ZnO and ZnS in OAC-Zn; TGA analysis indicated thermal stability in OAC-Zn and OC-500 materials; SEM images showed porous surfaces of different morphology, and the presence of microporosity in OC-500 and mesoporosity in the OAC-Zn that was confirmed by physical nitrogen adsorption. The elements C, O, Zn and S was identified in OAC-Zn by EDX analysis. The results of TPD-NH3 showed that the solids contained medium and weak acidity. Campholenic aldehyde was synthesized with a 96 % selectivity over a mesoporous carbonaceous material obtained from orange peels using ZnSO4.7H2O as activating agent

Downloads

Download data is not yet available.

Author Biography

Aída Luz Villa, Environmental Catalysis Research Group, Chemical Engineering Department, Universidad de Antioquia, Medellín, Antioquia, Colombia

Studies:

1992: Chemical Engineering, "Catalytic oxidation of benzene, toluene and xylenes", Universidad Nacional de Colombia.

1997: MSc in Chemical Sciences, "Selective reduction of nitric oxide by methane on zeolitic catalysts", Universidad de Antioquia. 

2000: PhD in Biological Sciences, "Epoxidation of monoterpenes by homogeneous and heterogeneous catalytic system", Supervisors: professor Pierre Jacobs and professor Dirk de Vos.  KU Leuven. 

Employment: She is currently full time professor at the School of Engineering at Universidad de Antioquia (Colombia) and the coordinator of the Environmental Catalysis research group (https://catalisisambiental.wixsite.com/environmentalcat).

Research interests: Her current research fields include synthesis and characterization of catalysts, transformation of essential oils components, reduction of NOx, valorization of CO2, kinetics, thermodynamics, Life Cycle Analysis, reactors design.

Citizenship: Colombian

https://scholar.google.com/citations?user=GKqA480AAAAJ&hl=es

https://www.researchgate.net/profile/Aida-Villa

https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000087785

 

References

Advani, J. H., Singh, S. A., Noor-ul, H. K., Hari, C. B., Biradar, A. V. (2020). Black yet green: sulfonic acid functionalized carbon as an efficient catalyst for highly selective isomerization of α-pinene oxide to trans-carveol. Applied Catalysis B: Environmental, 268, 118456.
Ajay, K. M., Dinesh, M. N., Byatarayappa, G., Radhika, M. G., Kathyayini, N., Vijeth, H. (2021). Electrochemical investigations on low cost KOH activated carbon derived from orange-peel and polyaniline for hybrid supercapacitors. Inorganic Chemistry Communications, 127, 108523.
Andas, J., Ab, N. A. (2018). Synthesis and characterization of tamarind seed activated carbon using different types of activating agents: a comparison study. Materials Today: Proceedings, 5 (9), 17611-17617.
Barakov, R., Shcherban, N., Mäki-Arvela, P., Yaremov, P., Bezverkhy, I., Wärnå, J., Murzin, D. J. (2022). Hierarchical beta zeolites as catalysts in α-pinene oxide isomerization. ACS Sustainable Chemistry & Engineering, 10(20), 6642-6656.
Battista, A., Muhammad, H. H., Zaman, W. Q., Mohsin, M. Z., Zhang, J., Liu, Z., Tian, X., Rehman, S-ur., Khan, I. M., Niazi, S., Zhuang, Y., Guo, M. (2021). Advances in sustainable approaches utilizing orange peel waste to produce highly value-added bioproducts. Critical Reviews in Biotechnology, 42(8), 1284-1303.
Battista, F., Remelli, G., Zanzoni, S., Bolzonella, D. (2020). Valorisation of residual orange peels: limonene recovery, volatile fatty acids and biogas productions. ACS Sustainable Chemistry, 8(1), 6834–6843.
Fernandez, M. E., Nunell, G. V., Bonelli, P. R., Cukierman, A. L. (2014). Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes. Industrial Crops and Products, 62, 437-445.
Ghaedi, M., Larki, H. A., Kokhdan, S. N., Marahel, F., Sahraei, R., Daneshfar, A., Purkait, M. K. (2012). Synthesis and characterization of zinc sulfide nanoparticles loaded on activated carbon for the removal of methylene blue. Environmental Progress & Sustainable Energy, 32(3), 535-542.
Hassan, M. F., Sabri, M. A., Fazal, H., Hafeez, A., Shahzad, N., Hussain, M. (2019). Recent trends in activated carbon fibers production from various precursors and applications—A comparative review. Journal of Analytical and Applied Pyrolysis, 145, 104715-10479.
Hsu, L-Y., Teng, H. (2000) Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Processing Technology, 64(1-3), 155-166.
Kawano, T., Kubota, M., Onyango, M. S., Watanabe, F., Matsuda, H. (2008). Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Applied Thermal Engineering, 28 (8-9), 865-871.
Li, Z., Zhai, K., Wang, G., Li, Q., Guo, P. (2016). Preparation and electrocapacitive properties of hierarchical porous carbons based on loofah sponge. Materials, 9(11), 912-922.
Lonkar, S. P., Pillai, V. V., Alhassan, S. M. (2018). Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation. Scientific Reports, 8(1), 13401-13414.
Muniandy, L., Adam, F., Mohamed, A. R., Ng, E. P. (2014). The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous and Mesoporous Materials, 197, 316-323.
Ozdemir, I., Şahin, M., Orhan, R., Erdem, M. (2014). Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Processing Technology, 125, 200-206.
Pajaro, N. P., Oliver, V., Tadeo, J. (2011). Química verde: un nuevo reto. Ciencia e Ingeniería Neogranadina, 21(2), 169-182.
Pandiarajan, A., Kamaraj, R., Vasudevan, S., Vasudevan, S. (2018). OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: Adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, 261, 329-341.
Pathak, P. D., Mandavgane, A. S., Kulkarni, B. D. (2017). Fruit peel waste: characterization and its potential uses. Current Science, 113(3), 444-454.
Pełech, I., Sibera, D., Staciwa, P., Kusiak-Nejman, E., Kapica-Kozar, J., Wanag, A., Narkiewicz, U., Morawski, A. W. (2021). ZnO/carbon spheres with excellent regenerability for post-combustion CO2 capture. Materials, 14(21), 6478-6487.
Pitínová-Štekrová, M., Eliášová, P., Weissenberger, T., Shamzhy, M., Musilová, Z., Čejka, J. (2018). Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Catalysis Science & Technology, 8(18), 4690-4701.
Poleo, N., Oliveros, S., Colina M., Rincón, N., Mesa, J., Colina, G. (2010). Study of different chemical activatings on obtaining activated carbon from Hymenaea courbaril L. shell for cadmium (11) removal. Revista Técnica de la Facultad de Ingeniería de la Universidad Zulia, 33(1), 29-38.
Rezae, A., Godini, H., Dehestani, S., Khavanin, A. (2008). Application of impregnated almond shell activated carbon by zinc and zinc sulfate for nitrate removal from water. Journal of Environmental Health Science & Engineering, 5(2), 125-130.
Sanchéz, J. E., Villa, A. L. (2019). Isomerization of α and β pinene epoxides over Fe or Cu supported MCM-41 and SBA-15 materials. Applied Catalysis A: General, 580, 17-27.
Sánchez, J. E., Gelves, J. F., Márquez, M. A., Dorkis, L., Villa, A. L. (2020). Catalytic isomerization of α-pinene epoxide over a natural zeolite. Catalysis Letters, 150, 3132-3148.
Santhosh, A., Dawn, S. S. (2021). Synthesis of zinc chloride activated eco-friendly nano-adsorbent (activated carbon) from food waste for removal of pollutant from biodiesel wash water. Water Science Technology, 84(5), 1170-1181.
Singh, S. A., Advani, J. H., Biradar, A. V. (2020). Phosphonate functionalized carbon to trans-carveol. Dalton Transactions, 49, 7210-7217.
Singh, A. S., Naikwadi, D. R., Ravi, K., Biradar, A. V. (2022). Chemoselective isomerization of α-pinene oxide to trans- by robust and mild Brønsted acidic zirconium phosphate catalyst. Molecular Catalysis, 521, 112189.
Sneha, D., Thorat, P. V., Topare, N. S. (2018). Preparation and characterization of activated carbon from orange peels. Journal of Catalyst and Catalysis, 5(1), 15-20.
Štekrová, M-, Kumar, N., Aho, A., Sinev, I., Grunert, W., Dahl, J., Roine, J., Arzumanov, S. S., Mäki-Arvela, P., Murzin, D. Y. (2014). Isomerization of α-pinene oxide using Fe-supported catalysts: selective synthesis of campholenic aldehyde. Applied Catalysis A: General, 470, 162-176.
Stekrova, M., Eliášová, P., Weissenberger, T., Shamzhy, M., Musilova, Z., Cejka, J. (2018). Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Journal Catalysis Science Technology, 8, 4690-4701.
Tovar, A. K., Godínez, L. A., Espejel, F., Ramírez-Zamora, R. M., Robles, I. (2019). Optimization of the integral valorization process for orange peel waste using a design of experiments approach: production of high-quality pectin and activated carbon. Waste Management, 85, 202-213.
Vrbková, E., Vyskočilová, E., Lhotka, M., Červený, L. (2020). Solvent influence on selectivity in α-pinene oxide isomerization using MoO3-modified zeolite BETA. Catalysts, 10(11), 1244-1261.
Wang. L., Zhou, P., Guo, Y., Zhang, J., Qiu, X., Guan, Y., Yu, M., Zhue, H., Zhang, Q. (2019). The effect of ZnCl2 activation on microwave absorbing performance in walnut shell-derived nano-porous carbon. RSC Advances, 9(17), 9718-9728.
Wang, Y., Dou, H., Ding, B., Wang, J., Chang, Z., Xu, Y. L., Hao, X. D. (2016). Nanospace-confined synthesis of oriented porous carbon nanosheets for high-performance electrical double layer capacitors. Journal of Materials Chemistry A, 4(43), 16879-16885.
Wei, Q., Chen, Z., Cheng, Y., Wang, X., Yang, X., Wang, Z. (2019). Preparation and electrochemical performance of orange peel based-activated carbons activated by different activators. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 574, 221-227.
Xi,Y., Huang, S., Yang, D., Qiu, X., Su, H., Yi, C., Li, Q. (2021). Hierarchical porous carbon derived from the gas-exfoliation activation of lignin for high-energy lithium-ion batteries. Green Chemistry, 22(13), 4321-4330.
Published
2023-04-15
How to Cite
Villa, A. L. and Mediavilla, M. (2023) “Evaluation of the Isomerization of α-Pinene Epoxide to Campholenic Aldehyde Using a Catalyst Obtained from Orange Peels (Citrus sinensis)”, Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 46(1), p. e234603. doi: 10.22209/rt.v46a03.
Section
Artículos de Investigación