Design of a Biorefinery to obtain Bioproducts from Lignocellulosic Waste

Keywords: surgacana bagasse, biorefinery, pellets, SuperPro Designer®, xylitol

Abstract

Agroindustrial waste has a high potential for use thanks to its varied chemical composition, which is evidenced by the diversity of existing alternatives for its subsequent reuse. In the present study, the design of a biorefinery is proposed with the use of sugar cane bagasse as biomass to obtain second-generation products, considering alternatives that consider the use of liquor and solid residual. The SuperPro Designer® v.10e program was used to carry out the corresponding simulations and determine the by-products of greatest economic interest, based on a comparison of indicators, such as: net present value (NPV), internal rate of return (IRR), period return on investment (PRI) and return on investment (ROI), provided by the simulator. The results showed that the xylitol-pellets configuration is the most viable, considering that from an initial investment of $52,145,000, the biorefinery obtained a NPV of $122,612,000, an IRR of 34.14% and a PRI of 2, 1 year. In addition, a sensitivity analysis was carried out considering the different dynamic indicators, through the need for the unit sale price of xylitol. Finally, the economic analysis showed the viability of the production of xylitol and pellets with sugar cane bagasse

Downloads

Download data is not yet available.

Author Biographies

Andrés Alexander Alcívar-Bravo, Departamento de Procesos Químicos, Alimentos y Biotecnología. Universidad Técnica de Manabí. Portoviejo, Ecuador

Graduated from the Chemical Engineering career at the Technical University of Manabí (Ecuador). He has taken courses on program management: MatLab, Superpro Designer, AutoCad. He has participated in scientific conventions, congresses, symposiums, and webinars as a listener. It has a scientific publication

Selena Doménica Velásquez-Bazurto, Departamento de Procesos Químicos, Alimentos y Biotecnología. Universidad Técnica de Manabí. Portoviejo, Ecuador

Graduated from the Chemical Engineering degree at the Technical University of Manabí (Ecuador), experience as a teacher at the Teniente Hugo Ortiz Educational Unit. He has taken courses on program management: MatLab, Superpro Designer, AutoCad. He has participated in scientific conventions, congresses, symposiums, and webinars as a listener. It has a scientific publication.

Ricardo José Baquerizo Crespo, Departamento de Procesos Químicos, Alimentos y Biotecnología. Universidad Técnica de Manabí. Portoviejo, Ecuador

Chemical Engineer, Master in Environmental Engineering. Studying the Doctorate in Chemical Engineering at the University of Alicante, Spain. He taught from 2016 to 2017 in Ecuador at the Universidad Politécnica del Litoral de Guayaquil. He currently works at the Technical University of Manabí (Ecuador) as a professor of Bioprocess Engineering. Tutor of master's students in the Chemical Engineering postgraduate program of the Technical University of Manabí. It has 15 scientific publications of regional and international impact and 5 book chapters.

Maria Antoniera Riera, Departamento de Procesos Químicos, Alimentos y Biotecnología. Universidad Técnica de Manabí. Portoviejo, Ecuador
  • Industrial Engineer, Magister Scientiarum in Chemical Engineering. Completing the Doctorate in Industrial Engineering at the National University of Cuyo. He taught from 2006 to 2016 in both public and private universities in Venezuela. He currently works at the Technical University of Manabí (Ecuador) and as a visiting professor in some subjects at the Technological Business University of Guayaquil. Tutor of master's students in the Chemical Engineering postgraduate program of the Technical University of Manabí. It has 20 scientific publications of regional and international impact and 2 book chapters (Springer).

 

References

Aguilar Rivera, N. (2016). Pulpa de bagazo de caña con alto índice de fibra larga. Revista de la Facultad de Ingeniería Universidad del Zulia, 39(2), 47–55.

Alcoser, M. A. G., Parada Rivera, M. M., Flores Fiallos, L. M., Manobanda Pinto, P. M. (2020). Diseño de un proceso de producción de ácido cítrico por simulación computacional. Ciencia Digital, 4(1), 54–71.

Area, M. C., Vallejos, M. E. (2012). Biorrefinería a partir de residuos lignocelulósicos. Conversión de residuos a productos de alto valor. Sarrebrucken: Editorial Académica Española.

Benítez Cortés, I., Pérez Martínez, A., Barrios Rodríguez, M. A., Rodríguez Machado, A., Pérez Sánchez, A. (2018). Simulación de una planta de producción de aceite de moringa empleando el simulador de procesos Superpro Designer. Tecnología Química, 38(2), 236–247.

Campos Ramírez, L., Pérez Sánchez, A., Benítez Legrá, A., Benítez, I. (2020). Estudio técnico-económico de dos tecnologías de producción de biodiesel a partir de aceite de soya empleando el simulador SuperPro Designer. Tecnológicas, 23(48), 117–139.

Cherubini, F. (2010). The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412–1421.

Clauser, N. M. (2018). Estudio Técnico-económico de la biorrefinería de los residuos de industrialización primaria de la madera y agroindustriales. Tesis de grado. Posadas: Universidad Nacional de Misiones.

Clauser, N. M., Gutiérrez, S., Area, M. C., Felissia, F. E., Vallejos, M. E. (2016). Small-sized biorefineries as strategy to add value to sugarcane bagasse. Chemical Engineering Research and Design, 107, 137–146

Clauser, N. M., Gutiérrez, S., Area, M. C., Felissia, F. E., Vallejos, M. E. (2018). Techno-economic assessment of carboxylic acids, furfural, and pellet production in a pine sawdust biorefinery. Biofuels, Bioproducts and Biorefining, 12(6), 997–1012.

Dias, M. O. S., Junqueira, T. L., Cavalett, O., Cunha, M. P., Jesus, C. D. F., Mantelatto, P. E., Rossell, C. E. V., Maciel Filho, R. y Bonomi, A. (2013). Cogeneration in integrated first and second generation ethanol from sugarcane. Chemical Engineering Research and Design, 91(8), 1411–1417.

Fatehi, P., Catalan, L., Cave, G. (2014). Simulation analysis of producing xylitol from hemicelluloses of pre-hydrolysis liquor. Chemical Engineering Research and Design, 92(8), 1563–1570.

Freire Ordóñez, C., Medrano Barboza, J. (2019). Optimization of the process of obtaining biodiesel from a production company, through simulation, Perspectivas, 1(16), 105–133.

García García, B. A. (2016). Diseño conceptual y simulación de una biorrefinería basada en Agave tequilana Weber. Tesis de maestría. Morelia: Universidad de San Nicolás de Hidalgo.

Gómez Manotoa, O. X. (2017). Evaluación financiera y análisis de riesgos de un proyecto de inversión para la elaboración de chocolate artesanal orgánico en el Ecuador. Tesis de maestría. Quito: Universidad Andina Simón Bolivar.

Green, D. W., Perry, R. H. (2008). Perry’s chemical engineers’ handbook. 8th ed. New York: McGraw-Hill Education.

Guerra Rodríguez, L. E., Pérez Sánchez, A., Zayas Zayas, L. M. (2019). Rentabilidad económica y análisis de sensibilidad de una planta de producción de ácido cítrico a partir de bagazo de caña de azúcar. Revista de Ciencia y Tecnología, 1(31), 1–10.

Hassan, S. S., Williams, G. A., Jaiswal, A. K. (2018). Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresource Technology, 262, 310–318.

Herazo Camaño, I. C., Ruiz Cárdenas, D., Arrázola Paternina, G. S. (2011). Utilización de Candida guilliermondii aislada del corozo chiquito (Bactris guineensis) en la producción de xilitol. Revista Colombiana de Biotecnología, 13(1), 52–57.

Jenkins, S. (2019). Facts at your fingertips: fermentation considerations and economics. Chemical Engineering, 126, 72.

Kelloway, A., Daoutidis, P. (2014). Process synthesis of biorefineries: Optimization of biomass conversion to fuels and chemicals. Industrial and Engineering Chemistry Research, 53(13), 5261–5273.

Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48(8), 3713–3729.

Lagos Burbano, E., Castro Rincón, E. (2019). Caña de azúcar y subproductos de la agroindustria azucarera en la alimentación de rumiantes. Agronomía Mesoamericana, 30(3), 917–934.

Lamsal, B., Yoo, J., Brijwani, K., Alavi, S. (2010). Extrusion as a thermo-mechanical pre-treatment for lignocellulosic etanol. Biomass and Bioenergy, 34(12), 1703–1710.

Lei, Y., Liu, S., Li, J. (2010). Effect of hot-water extraction on alkaline pulping of bagasse. Biotechnology, 28(5), 609–612.

Machín Ferrero, L., Mele, F. D. (2018). Diseño y optimización de biorrefinerías de caña de azúcar con criterios de sustentabilidad. 26° Jornadas de Jóvenes Investigadores (AUGM 2018). Mendoza: Universidad Nacional de Cuyo.

Mena Orduz, G. A. (2020). Estudio de viabilidad técnica y económica para la producción de xilitol a partir del bagazo de caña de azúcar. Tesis de grado. Colombia: Universidad de los Andes.

Misra, S., Gupta, P., Raghuwanshi, S., Dutt, K., Saxena, R. K. (2011). Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Separation and Purification Technology, 78(3), 266–273.

Moncada, J., Tamayo, J. A., Cardona, C. A. (2014). Integrating first, second, and third generation biorefineries: Incorporating microalgae into the sugarcane biorefinery. Chemical Engineering Science, 118(1), 126–140.

Moreno, A. D., Tomás Pejó, E., Ballesteros, M., Negro, M. J. (2019). Pretreatment technologies for lignocellulosic biomass deconstruction within a biorefinery perspective. Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, (2), 379–399.

Nhuchhen, D. R., Basu, P., Acharya, B. (2014). A Comprehensive review on biomass torrefaction. International Journal of Renewable Energy & Biofuels, 2014, 1–56.

Peters, M. S., Timmerhaus, K. D., West, R. E. (1991). Plant design and economics for chemical engineers. 5ta ed. Singapure: McGraw-Hill Chemical Engineering Series.

Ping, Y., Ling, H. Z., Song, G., Ge, J. P. (2013). Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochemical Engineering Journal, 75, 86–91.

Sadhukhan, J., Ng, K. S., Hernandez, E. M. (2014). Biorefineries and chemical processes: design, integration and sustainability analysis. Hoboken: Wiley Blackwell.

Sánchez, Ó. J., Cardona, C. A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99(13), 5270–5295.

da Silva, S. S., Chandel, A. K. (2012). D-xylitol: fermentative production, application and commercialization. Berlin Heidelberg: Springer Science & Business Media.

Sinnott, R., Towler, G. (1805). Chemical engineering design. 4th ed. Oxford: Butterworth-Heinemann.

Sultana, A., Kumar, A., Harfield, D. (2010). Development of agri-pellet production cost and optimum size. Bioresource Technology, 101(14), 5609–5621.

Temmes, A., Peck, P. (2020). Do forest biorefineries fit with working principles of a circular bioeconomy? A case of Finnish and Swedish initiatives, Forest Policy and Economics, 110, 10189.

Tuquerres Curipallo, H., Cerda Mejía, G., Tenemasa, V., Diéguez Santana, K., Carrera Sánchez, K., Pérez Martínez, A. (2020). Diseño del proceso para la obtención de ácido cítrico a partir del bagazo de caña disponible en Pastaza, Ecuador. Centro Azúcar, 47(2), 86–96.

Vallejos, M. E., Felissia, F. E., Kruyeniski, J., Area, M. C. (2015). Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. Industrial Crops and Products, 67, 1–6.

Vallejos, M. E., Zambon, M. D., Área, M. C., da Silva Curvelo, A. A. (2015). Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysisand organosolv delignification. Industrial Crops and Products, 65, 349–353.

Vargas Corredor, Y. A., Peréz Pérez, L. I. (2018). Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas, 14(1), 59–72.

Vu, H. P., Nguyen, L. N., Vu, M. T., Johir, M. A. H., McLaughlan, R. y Nghiem, L. D. (2020). A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks. Science of The Total Environment, 743, 140630.

de Wild, P. J. (2015). Biomass pyrolysis for hybrid biorefineries. In: Industrial biorefineries and white biotechnology. Ed. Höfer, R., Larroche, C., Madhavan Nampoothiri, K., Pandey, A., Taherzadeh, M. 1st ed. Amsterdan: Elsevier, 341–368.

Zhao, Y., Shakeel, U., Saif Ur Rehman, M., Li, H., Xu, X. y Xu, J. (2020). Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. Journal of Cleaner Production, 253, 120076.
Published
2022-09-01
How to Cite
Alcívar-Bravo, A. A., Velásquez-Bazurto, S. D., Baquerizo Crespo, R. J. and Riera, M. A. (2022) “Design of a Biorefinery to obtain Bioproducts from Lignocellulosic Waste”, Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 45(3), pp. 172-184. doi: 10.22209/rt.v45n3a04.
Section
Artículos de Investigación