Assessing the Effect of Rain Gauge Density on Merging Radar and Rain Gauges

  • Rafael Ignacio Navas Nuñez Departamento del Agua, Centro Universitario Regional Norte, Universidad de la Repúplica. Gral Rivera 1350, Salto, 50000, Uruguay https://orcid.org/0000-0001-8559-9523
  • Pablo Andrés Gamazo-Rusnac Departamento del Agua, Centro Universitario Regional Norte, Universidad de la Repúplica. Gral Rivera 1350, Salto, 50000, Uruguay https://orcid.org/0000-0003-1991-3822
  • Armando Alexis Borrero-Hernandez Departamento del Agua, Centro Universitario Regional Norte, Universidad de la Repúplica. Gral Rivera 1350, Salto, 50000, Uruguay https://orcid.org/0000-0003-0016-6214
Keywords: rain gauge density, merging radar and rain gauges, external drift kriging

Abstract

Hydrometeorologists have had to interpolate precipitation recorded on rain gauges to describe precipitation fields. The appearance of new technologies, such as weather radar, has given way to alternative precipitation estimation techniques, which are based on radar-rain gauge fusion. External drift kriging is a fusion method that captures the advantages of both sensors, radar and rain gauges. In this work it is explained how the density of the the rain gauges affects the uncertainty merging radar and rain gauges. Additionally, ordinary kriging was used as a reference method and the possibility of dispensing with the rain gauge when in the presence of weather radar is discussed. The study area was located in the south of France, which has 4 meteorological radars and more than 200 rain gauges. The results of this work suggest that the application of merging radar and rain gauges brings benefits such as less biased and better correlated estimates, in which the rain gauge continues to offer valuable information

Downloads

Download data is not yet available.

Author Biographies

Rafael Ignacio Navas Nuñez, Departamento del Agua, Centro Universitario Regional Norte, Universidad de la Repúplica. Gral Rivera 1350, Salto, 50000, Uruguay

Adjunct professor, Universidad de la República. 15 publications in journals and scientific events. Interests in hydrological modeling and hydrometry. Doctor in Atmospheric Ocean and Hydrology (University of Grenoble Alpes), Magister Scientiarum in Hydraulic Engineering (Central University of Venezuela)Universidad Central de Venezuela, Hydrometeorological Engineer (Universidad Central de Venezuela).

Pablo Andrés Gamazo-Rusnac, Departamento del Agua, Centro Universitario Regional Norte, Universidad de la Repúplica. Gral Rivera 1350, Salto, 50000, Uruguay

Associate professor (Universidad de la República). More than 80 publications in journals and scientific events. Interests in environmental modeling. Doctor in Land Engineering (Polytechnic University of Catalonia), Civil Engineer (Universidad de la República).

Armando Alexis Borrero-Hernandez, Departamento del Agua, Centro Universitario Regional Norte, Universidad de la Repúplica. Gral Rivera 1350, Salto, 50000, Uruguay

Assistant professor (Universidad de la República). Interests in geology. Geological Engineer (Universidad de los Andes).

References

AghaKouchak, A., Habib, E., Bárdossy, A. (2010). Modeling radar rainfall estimation uncertainties: random error model. Journal of Hydrologic Engineering, 15(4), 265-274.
Andrieu, H., Emmanuel, I. (2013). Le radar météorologique en hydrologie urbaine. La Météorologie, 8(83), 28-38.
Berndt, C., Rabiei, E., Haberlandt, U. (2014). Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios. Journal of Hydrology, 508, 88-101.
Berne, A., Delrieu, G., Boudevillain, B. (2009). Variability of the spatial structure of intense Mediterranean precipitation. Advances in Water Resources, 32(7), 1031-1042.
Borga, M., Tonelli, F. (2000). Adjustment of range-dependent bias in radar rainfall estimates. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(10-12), 909-914.
Borga, M., Tonelli, F., Moore, R. J., Andrieu, H. (2002). Long-term assessment of bias adjustment in radar rainfall estimation. Water Resources Research, 38(11), 1226.
Boudevillain, B., Delrieu, G., Galabertier, B., Bonnifait, L., Bouilloud, L., Kirstetter, P. E., Mosini, M. L. (2011). The Cevennes-Vivarais Mediterranean Hydrometeorological Observatory database. Water Resources Research, 47, W07701.
Boudevillain, B., Delrieu, G., Wijbrans, A., Confoland, A. (2016). A high-resolution rainfall re-analysis based on radar-raingauge merging in the Cévennes-Vivarais region, France. Journal of Hydrology, 541, 14-23
Courtel, F., López, J. L., Gascón, T. (2010). Critical rainfall for debris-flow generation in Catia La Mar. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 33(3), 223-234.
Delrieu, G., Nicol, J., Yates, E., Kirstetter, P. E., Creutin, J. D., Anquetin, S., Obled, C., Saulnier, G. M., Ducrocq, V., Gaume, E., Payrastre, O., Andrieu, H., Ayral, P. A., Bouvier, C., Neppel, L., Livet, M., Lang, M., du-Châtelet, J. P., Walpersdorf, A., Wobrock, W. (2005). The catastrophic flash-flood event of 8-9 september 2002 in the Gard region, France: a first case study for the Cévennes-Vivarais Mediterranean Hydrometeorological Observatory. Journal of Hydrometeorology, 6(1), 34-52.
Delrieu, G., Wijbrans, A., Boudevillain, B., Faure, D., Bonnifait, L., Kirstetter, P. E. (2014). Geostatistical radar-raingauge merging: A novel method for the quantification of rain estimation accuracy. Advances in Water Resources, 71, 110-124.
Erdin, R., Frei, C., Künsch, H. R. (2012). Data Transformation and uncertainty in geostatistical combination of radar and rain gauges. Journal of Hydrometeorology, 13(4), 1332-1346.
Figueras, J., Tabary, P. (2013). The new french operational polarimetric radar rainfall rate product. Journal of Applied Meteorology and Climatology, 52(8), 1817-1835.
Hazenberg, P., Torfs, P. J. J. F., Leijnse, H., Delrieu, G., Uijlenhoet, R. (2013). Identification and uncertainty estimation of vertical reflectivity profiles using a Lagrangian approach to support quantitative precipitation measurements by weather radar. Journal of Geophysical Research: Atmospheres, 118(18), 10,243-10,261.
Jaccard, P. (1901). Distribution de la Flore Alpine dans le Bassin des Dranses et dans quelques régions voisines. Bulletin de la Societe Vaudoise des Sciences Naturelles, 37(140), 241-272.
Jódar, J., Sapriza, G., Herrera, C., Lambán, L. J., Medina, A. (2015). Combining point and regular lattice data in geostatistical interpolation. Journal of Geographical Systems, 17(3), 275-296.
Jordan, P. W., Seed, A. W., Weinmann, P. E. (2003). A stochastic model of radar measurement errors in rainfall accumulations at catchment scale. Journal of Hydrometeorology, 4(5), 841-855.
Marshall, J. S., Palmer, W. M. K. (1948). The distribution of raindrops with size. Journal of Meteorology, 5(4), 165-166.
Matheron, G. (1970). La théorie des variables régionalisées, et ses applications. Les cahiers du centre de morphologie mathématique de Fontainebleu. Fontainebleu: Ecole Nationale Supérieure des Mines de Paris.
Méndez, W., Córdova, J., Bravo, L. (2015). Predictive models of instantaneous maximum discharges for catchments of mountainous environments, supported by morphometric parameters. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 38(3), 229-238.
Navas, R. (2017). Modélisation hydrologique distribuée des crues en région Cévennes-Vivarais: impact des incertitudes liées à l’estimation des précipitations et à la paramétrisation du modèle. Tesis doctoral. Grenoble: Université Grenoble Alpes.
Navas, R., Delrieu, G. (2018). Distributed hydrological modeling of floods in the Cévennes-Vivarais region, France: Impact of uncertainties related to precipitation estimation and model parameterization. Journal of Hydrology, 565, 276-288.
Ochoa-Rodriguez, S., Wang, L. P., Willems, P., Onof, C. (2019). A review of radar-rain gauge data merging methods and their potential for urban hydrological applications. Water Resources Research, 55(8), 6356-6391.
Sokol, Z., Szturc, J., Orellana-Alvear, J., Popová, J., Jurczyk, A., Célleri, R. (2021). The role of weather radar in rainfall estimation and its application in meteorological and hydrological modelling a review. Remote Sensing, 13, 351.
Tabary, P. (2007). The new french operational radar rainfall product. Part I: methodology. Weather and Forecasting, 22(3), 393-408.
Tabary, P., Desplats, J., Do Khac, K., Eideliman, F., Gueguen, C., Heinrich, J. C. (2007). The new french operational radar rainfall product. part II: validation. Weather and Forecasting, 22(3), 409-427.
Zhang, S., Zhang, J., Liu, Y., Liu, Y. (2016). A mathematical spatial interpolation method for the estimation of convective rainfall distribution over small watersheds. Environmental Engineering Research, 21(3), 226-232.
Published
2022-09-01
How to Cite
Navas Nuñez, R. I., Gamazo-Rusnac, P. A. and Borrero-Hernandez, A. A. (2022) “Assessing the Effect of Rain Gauge Density on Merging Radar and Rain Gauges”, Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 45(3), pp. 156-163. doi: 10.22209/rt.v45n3a02.
Section
Artículos de Investigación