Energy and Economic Assessment of Household Space Heating by Heat Pumps in Bariloche, Montevideo and Santiago

Evaluación Energética y Económica de Calefacción de Hogares por Bomba de Calor en Bariloche, Montevideo y Santiago

  • Luis Eduardo Juanicó Instituto Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional Investigaciones Científicas y Tecnológicas (CONICET) y Universidad Nacional del Comahue, Bariloche, (8400), Río Negro, Argentina https://orcid.org/0000-0003-2422-647X
  • Italo Bove Vanzulli Laboratorio de Energía Solar, Facultad de Ingeniería, Universidad de la República, CP 11.300, Montevideo, Uruguay https://orcid.org/0000-0001-8450-8183
Keywords: household heat pump heaters, air-to-air heat pump, air-source water heat pump, household flue-draft gas heaters, household gas boilers

Abstract

Climate change forces to improve the efficiency of energy consumption. This work develops a methodology for energy and economic assessment related to replacing a standard household heating system fueled by natural gas, LPG, or conventional electric heaters, with a modern heat pump (inverter). As its efficiency is related to the temperature difference between the outdoor and indoor environments, the efficiency varies depending on the location of the city. Thus, the performance is studied in Bariloche, Santiago de Chile, and Montevideo (Average annual temperature of 8.3, 14.6 and 16.3 °C, respectively), using the following systems: 1) air-air, installing several Split devices; and 2) air-water, installing a heat pump that provides heating by water radiators. This methodology allows sizing these systems and calculating annual savings, exemplified for a 50 m2 social housing. In all the cases studied, moderate to notable reductions in consumption and savings were achieved (and investment payback periods of less than two years), except for natural gas in Bariloche and Montevideo. It is also discussed how their moderated investment can be an affordable first solution, as opposed to the expensive thermal rehabilitation, for obtaining more sustainable housing.

Downloads

Download data is not yet available.

Author Biographies

Luis Eduardo Juanicó, Instituto Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional Investigaciones Científicas y Tecnológicas (CONICET) y Universidad Nacional del Comahue, Bariloche, (8400), Río Negro, Argentina

Luis Juanicó obtained their Doctor (PhD) and Engineer degrees in Nuclear Engineering at the Balseiro Institute (Argentinean National University of Cuyo), in which he was also Professor during 21 years. Besides, he was Head of the Department of New Energy Technologies at the Petroleum&Gas Holding PECON S.A, and from 2003 he work as scientific researcher (independent degree) at the Argentinean National Council of Scientific Researches (Conicet) and he is also invited professor at both Argentinean National Universities: Comahue and Rosario. Among his scientific production, it is remarkable the one hundred of works published in international high-quality journals and the two hundreds of works presented in international congresses, together with a dozen of invention patents, all of them covering many issues and different subjects related to Innovative Energy Technologies.

Italo Bove Vanzulli, Laboratorio de Energía Solar, Facultad de Ingeniería, Universidad de la República, CP 11.300, Montevideo, Uruguay

He was born in Montevideo, Uruguay. He received his Bachelor's degree in Physics from the University of the Republic (UdelaR), Uruguay, in 1998, and his Ph.D. in Philosophy of Physics from the University of Barcelona, Spain, in 2002 in experimental fluid dynamics. He is currently Associate Professor of the Physics Institute of the UdelaR Faculty of Engineering. His field of research is related to Solar Thermal Energy, Energy Efficiency and physics of fluid. He works in the Solar Energy Laboratory of the UdelaR, directing the Thermal part of it. It combines basic and applied research, related to specific issues of the local reality.

References

ASHRAE. (2021). Table of outdoor design temperatures for winter and summer [en línea] disponible en: https://hvac-eng.com/weather-design-conditions-for-selected-locations/ [consulta: 25 mayo 2021].
Bauer, D., Marx, R., Nußbicker-Lux, J., Ochs, F., Heidemann, W., Müller-Steinhagen, H. (2010). German central solar heating plants with seasonal heat storage. Solar Energy, 84(4), 612-623.
Climate-data.org (2019). Climate data for cities worldwide [en línea] disponible en: https://en.climate-data.org/ [consulta: 16 diciembre 2019].
Colclough, S., Griffiths, P. (2016). Financial analysis of an installed small-scale seasonal thermal energy store. Renewable Energy, 86, 422-428.
Díaz, C., Czajkowski, J. (2006). Auditorías energéticas en viviendas de interés social en Río Grande, Tierra del Fuego. Avances en Energías Renovables y Medio Ambiente, 10, 33-38.
Eto, J.H. (1988). On using degree-days to account for the effects of weather on annual energy use in office buildings. Energy and Buildings, 12, 113-127.
Gil, S., Prieto, R. (2013). Categorización racional de usuarios residenciales - herramienta para promover un uso más eficiente del gas. Memorias del encuentro atinoamericano de uso racional y eficiente de la energía – ELUREE 2013. Buenos Aires: Organizado por UNSAM, UBA e INTI, 15-24
González, A., Carlsson-Kanyama, A., Crivelli, C., Gortari, S. (2007). Residential energy use in one-family households with natural gas provision in a city of the Patagonian Andean region. Energy Policy, 35, 2141-2150.
González, A. (2009). Energy subsidies in Argentina lead to inequalities and low thermal efficiency. Energies, 2, 769-788.
González, A. (2013). Management of disaster risks derived from very large fuel subsidies to natural gas in Argentina. Climate Change and Disaster Risk Management, Part 3, 463-473.
González, A. (2014). Casas confortables con mínimo uso de energía: estudio de casos prácticos para Argentina y Chile Bariloche [en línea] disponible en: http://www.ipatec.conicet.gob.ar/casas-confortables-con-minimo-uso-de-energia-estudio-de-casos-practicos-para-argentina-y-chile/ [consulta: 1 junio 2021].
González, A. (2016). El principal limitante para la aceptación de las nuevas tarifas es la baja calidad térmica en las viviendas. Revista Petroquímica, 323, 244-248.
Juanicó, L., González, A. (2008). Thermal efficiency of natural gas balanced-flue space heaters: measurements for commercial devices. Energy and Buildings, 40, 1067-1073.
Juanicó, L., González, A. (2018). Calefacción solar en edificaciones con acumulación en gran reservorio de agua. Revista INVI, 33, 153-172.
Juanicó, L. (2020). Heating houses by using vacuum-tube solar collectors and a small above-ground water tank: a cost-effective solution for maritime climates. Advanced in Building Energy Research, 15, 199-222.
Juanicó, L., Bove, I. (2020). Eficiencia energética en el hogar: el calentador eléctrico con tanque de agua. Revista Técnica de la Facultad de Ingeniería, Universidad del Zulía, 43 (2), 58-64.
Juanicó, L., Bove, I. (2021). Efficient heating of sanitary water with heat pump. ENERLAC Revista de Energía de América Latina y el Caribe, 5(1), 94-104.
Judkoff, R., Neymark, J. (1999). Adaptation of the BESTEST intermodel comparison method for proposed ASHRAE standard 140P: method of test for building energy simulation programs. ASHRAE Transactions SE-99-06-4, 105, 721. Disponible en: www.ashrae.org.
Piechurski, K., Szulgowska-Zgrzywa, M., Danielewicz, J. (2017). The impact of the work under partial load on the energy efficiency of an air-to-water heat pump.. 9th conference on interdisciplinary problems in environmental protection and engineering EKO-DOK. Boguszow: Universidad Politecnica de Breslavia, 1-8.
Sibbitt, B., Mcclenahan, D., Djebbar, R., Kokko, J. (2012). The performance of a high solar fraction seasonal storage district heating system – five years of operation. Energy Procedia, 30, 856-865.
Staffell, I., Brett, D., Brandon, N., Hawkes, A. (2012). A review of domestic heat pumps. Energy & Environmental Science, 5(11), 9291-9306.
Stene, J. (2005). Residential CO2 heat pump system for combined space heating and hot water heating. International Journal of Refrigeration, 28(8), 1259-1265.
Sulaiman, H., Sipowicz, E., Filippin, C., Oga, L. (2020). Energy performance of dwellings in a temperate climate area of Argentina. An architectural proposal. The Open Construction and Building Technology Journal, 14, 1-16.
Vieira, A.S., Beal, C.D., Stewart, R.A. (2014). Residential water heaters in Brisbane, Australia: Thinking beyond technology selection to enhance energy efficiency and level of service. Energy and Buildings, 82, 222-236.
Walls, M. (2006). Energy-efficient terrace houses in Sweden: simulations and measurements, Energy and Buildings, 38, 627-634.
Watson, D. (1997). Time-saver standards for architectural design data. 7th ed. Ciudad: New York, USA; McGraw-Hill.
Winkler, J. (2011). Laboratory test report for Fujitsu 12RLS and Mitsubishi FE12NA mini-split heat pumps [en línea] disponible en: https://www.nrel.gov/docs/fy11osti/52175.pdf [consulta: 1 junio 2021].
Woods, J., Fuller, C. (2014). Estimating base temperatures in econometric models that include degree days. Energy Economics, 45, 166-171. Xiao, B., He, L., Zhang, S., Kong, T., Hu, B., Wang, R.Z. (2020). Comparison and analysis on air-to-air and air-to-water heat pump heating systems. Renewable Energy, 146, 1888-1896.
Zirngibl, J. (2020). Heat pump standard EN 15316-4-2: from compliance to real consumption. REHVA Journal, 57(6), 5-9.
Published
2021-12-29
How to Cite
Juanicó, L. E. and Bove Vanzulli, I. (2021) “Energy and Economic Assessment of Household Space Heating by Heat Pumps in Bariloche, Montevideo and Santiago: Evaluación Energética y Económica de Calefacción de Hogares por Bomba de Calor en Bariloche, Montevideo y Santiago”, Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 45(1), pp. 58 - 68. doi: 10.22209/rt.v45n1a06.
Section
Artículos de Investigación