Modular Decomposition of a Extended Finite State Machine for Automatic Control of a Dual Piston Pump System

Descomposición Modular de Máquina de Estados Finita Extendida para Control Automático de un Sistema de Relevo de Bombas de Pistón

Keywords: laboratory automation, extended finite state machines, discrete event systems, decomposition methods

Abstract

The problem of designing and implementing the control logic of an automatic injection system, in continuous flow mode for two-piston pumps, was addressed, with the aim of increasing the productive time of a test unit for fluid displacement in a porous medium. The objective was the development of control system models that are understandable for the user and, at the same time, facilitate debugging and system modification avoiding the explosion in complexity of the models. In the first stage, a monolithic extended finite-state machine model was developed, in which all the components of the system, integrated by two-piston pumps and the injection and recharge valves associated with each one, are taken into account. Subsequently, a modular model was built from the monolithic model, consisting of a network of two extended finite-state machines, each associated with one of the pumps. By implementing this network the injection system could be possibly, automatically controlled. Thanks to this approach models were obtained that enhance flexibility and readability to the system, which are aspects of great relevance in laboratory automation.

Downloads

Author Biography

Jorge Luis Rojas D’Onofrio , Laboratorio de Mecatrónica, Fase C, Sede Central, PDVSA-INTEVEP, Los Teques, C.P. 1201, Venezuela

Doctor in Energy and Systems, Master in Industrial Automation and Electrical Engineer from INSA de Lyon, France. Leader of the automation technology development team, Well Productivity Department, Mechatronics Group, PDVSA-INTEVEP, Venezuela. Nine years of experience in laboratory automation and technology research and development projects for the oil industry.

References

Alagar, V., Periyasami, K. (2011). Specification of software systems, 2nd ed. London: Springer.

Cheng, K. T., Krishnakumar, A. S. (1993). Automatic functional test generation using the extended finite state machine model. 30th international design automation conference. Dallas: ACM/IEEE, 86-91.

El-Fakih, K., Simao, A., Jadoon, N., Maldonado, J. C. (2016). An assessment of extended finite state machine test selection criteria. The Journal of Systems & Software, 123, 106-118.

Foster, M., Brucker, A. D., Taylor, R. G., Derrick, J. (2020). A formal model of extended finite state machines. Archive of formal proofs [en línea] disponible en: https://ore.exeter.ac.uk/repository/bitstream/handle/10871/122936/foster.ea-efsm-2020.pdf?sequence=1&isAllowed=y (consultado: 21 septiembre 2021).

Friedrich, J., Scheifele, S., Verl, A., Lechler, A. (2015). Flexible and modular control and manufacturing system. Procedia CIRP, 33, 115-120.

Godena, G., Strmcnik, S. (2018). A new state machine behavior model for procedural control entities in industrial process control systems. Journal of Information Technology and Control, 47(3), 419-430.
Hamilton, S. D. (2009). 2008 ALA survey on laboratory automation. Journal of the Association for Laboratory Automation, 14(5), 308-319.

Harel, D. (1987). Statecharts: A visual formalization for complex systems. Science of Computer Programming, 8, 231-274.

Hawker, C. D. (2007). Laboratory automation: total and subtotal. Clinics in Laboratory Medicine, 27, 749-770.
Liscouski, J. G. (2006). Are you a laboratory automation engineer? Journal of the Association for Laboratory Automation, 11(3), 157-162.

Mohajerani, S., Malik, R., Fabian, M. (2015). A framework for compositional nonblocking verification of extended finite-state machines. Discrete Event Dynamic Systems, 26, 33-84.

Malik, R., Teixeira, M. (2016). Modular supervisor synthesis for extended finite-state machines subject to controllability. Proceedings of the 13th international workshop on discrete event systems. Xi'an: ACM/IEEE, 117-122.

Malik, R., Teixeira, M. (2020). Synthesis of least restrictive controllable supervisors for extended finite-state machines with variable abstraction. Discrete Event Dynamic Systems, 30, 211-241.

National Instruments (2020). Patrones de diseño de aplicaciones: máquinas de estado [en línea] disponible en: https://www.ni.com/es-cr/support/documentation/supplemental/16/simple-state-machine-template-documentation.html (consultado 21 septiembre 2021).

Payaro-Robles, L. J. (2018). Desarrollo de un sistema automático de detección y purga de aire en bombas de pistón. Sartenejas: Universidad Simón Bolívar.

Ramadge, P. J. G., Wonham, W. M. (1989). The control of discrete event systems. Proceedings of the IEEE, 77(1), 81-98.

Rojas-D’Onofrio, J. L., Perdomo, J., Tamburini, F., Vernáez, O., Rondón, B. (2018). Sistema de supervisión, control y adquisición de datos de equipo N3 ubicado en el laboratorio de Síntesis de Polímeros. Los Teques: PDVSA-INTEVEP.

Rojas-D’Onofrio, J. L. (2019). Sistema automático de inyección en modo de flujo continuo para dos bombas de pistón. Los Teques: PDVSA-INTEVEP.

Wonham, W. M., Cai, K., Rudie, K. (2017). Supervisory control of discrete-event systems: a brief history – 1980-2015. IFAC-PapersOnLine, 50(1), 1791-1797.
Published
2021-12-29
How to Cite
Rojas D’Onofrio , J. L. (2021) “Modular Decomposition of a Extended Finite State Machine for Automatic Control of a Dual Piston Pump System: Descomposición Modular de Máquina de Estados Finita Extendida para Control Automático de un Sistema de Relevo de Bombas de Pistón”, Rev. Téc. Fac. Ing. Univ. Zulia, 45(1), pp. 4 - 15. doi: 10.22209/rt.v45n1a01.
Section
Artículos de Investigación