Effect of Plate’s Thickness on the Hardfacing Welds Microstructure using SMAW Process
Effect of Plate’s Thickness on the Hardfacing Welds Microstructure using SMAW Process
Abstract
The establishment of hardfacing procedure by welding commonly goes through a previous evaluation of the consumable to be used, by means of the characterization tests of the welds; those results must be reproducible under practical conditions. The plate’s sizes for hardfacing welds depositions determine, together with heat input, the thermal cycle undergone by the weld material; however this aspect is frequently avoided when the samples are elaborated. In the present work was studied the effect of parent metal thickness on the dilution coefficient, the microstructure and the hardness of the hardfacing welds formed by white irons, based on the bodies and heat sources simplified schemes, as well as the mathematical models applied in thermal processes in welding. The results demonstrated the significant effect of plate thickness parameter on the response variables studied and the applicability of theoretical models of thermal processes in welding is also demonstrated in the adequate sizing of the test plates, which allows the reproducibility in practice of the results of the characterization of hardfacing welds.
Downloads
References
ASTM E 562. (2011). Standard test method for determining volume fraction by systematic manual point count. West Conshohocken: American Society of Testing of Materials (ASTM).
AWS A5.13/A5.13M. (2010). Specification for surfacing electrodes for shielded metal arc welding. Miami: American Welding Society (AWS).
Collazo-Carceller, R., López-Salinas, H. (2009). Estudio del comportamiento de los recargues multicapas de depósitos soldados de fundición blanca al cromo. Revista Ingeniería Mecánica, 12(2), 83-92.
Chotěborský, R., Hrabě, P., Kabutey A. (2011). The effect of microstructure of the hypoeutectic Fe-Cr-C hardfacing on abrasive wear. Scientia Agric Bohemica, 42(3), 127-132.
Chotěborský, R., Hrabě, P., Müller, M., Savková, J., Jirka, M. (2008). Abrasive wear of high chromium Fe-Cr-C hardfacing alloys. Scientia Agriculturae Bohemica, 54(4), 192-198.
Dieter, G. E. (1997). Materials selection and design. ASM HandBook. Volume 20. 1st edition. EUA: ASM International.
Dulón-Gómez, J. (2003). Manual de soldadura pata la industria azucarera. La Habana: Ed. Talleres de Impresiones gráficas del Ministerio del Azúcar.
EN 1993-1-2. (2005). Eurocode 3: Design of steel structures - Part 1-2: general rules - structural fire design. Bruselas: European Comittee for Standardization (CEN).
Grong, O. (1997). Metallurgical modelling of welding. 2nd edition. London: The Institute of Materials.
Gucwa, M., Winczek, J., Parzych, S., Kukuryk, M. (2020). The effect of the hardfacing processes parameters on the carbide volume fraction. Springer Nature Switzerland AG. 410-417.
Guliaev, A. (1978). Metalografía. Tomo I. Moscú: Editorial Mir.
Kou, S. (2002). Welding metallurgy. 2nd edition. New Jersey: A John Wiley & Sons, Inc.
Marques, P. V., Modenesi, P. J. (2014). Algumas equações úteis em soldagem. Soldagem & Inspeção. 19(01), 091-102.
Masubuchi, K. (1980). Analysis of welded structures. Oxford: Pergamon Press Ltd.
Matsuo, T. T., Kiminami, C. S., Botta-Fo, W. J., Bolfarini, C. (2005). Sliding wear of spray-formed high-chromium white cast iron alloys. Wear, 259, 445-452.
Morsy, M., El-Kashif, E. (2014). The effect of microstructure on high-stress abrasion resistance of Fe-Cr-C hardfacing deposits. Weld World, 58, 491-497.
Oates, W. R., Saitta, A. M. (1998). Welding handbook AWS. Materials and application. Volume 4, part 2. 8th edition. Miami: Ed. AWS.
Olson, L., Siewert, T. A., Liu, S., Edwards, G. (1993). Welding fundamentals and processes ASM handbook. Volume 06. EUA: ASM International.
Ortiz-Méndez, T. (2018). Desarrollo de un electrodo tubular revestido a partir de una ferroaleación del sistema Fe-Cr-Mn-Si-C para el recargue de piezas sometidas a desgaste abrasivo. Tesis doctoral. Santa Clara: Universidad Central “Marta Abreu” de las Villas.
Ortiz-Méndez, T., Cruz-Crespo, A., Rodríguez, M. (2019). Efecto del número de pasadas sobre el desempeño al desgaste micro-abrasivo de depósitos de recargue obtenidos con un electrodo tubular revestido experimental. Rev. Téc. Ing. Univ. Zulia, 42(1), 19-26.
Pozo-Morejón, J. A., Guimaraes, L. F. (2018). Ajuste de los calores de entrada que se corresponden con los tiempos de enfriamiento de la ZAT en soldadura GMAW sobre acero Dúplex 2205 empleando MEF. Soldagem & Inspeção, 23(3), 413-422.
Radzikowska, J. M. (2004). ASM handbooks: metallography and microstructures. 3th edition. Ohio: ASM International.
Raynor, G. V., Rivlin, V. G. (1988). Phase equilibria in iron ternary alloys: a critical assessment of the experimental literature. 1st edition. London: Institute of Metals North American Publications Center.
Schön, C. G., Sinatora, A. (1998). Simulation of solidification paths in high chromium white cast irons for wear applications. Calphad, 22(4), 437-448.
Tabrett, C. P., Sare, I. R., Ghomashchi, M. R. (1996). Microstructure-property relationships in high chromium white iron alloys. International Materials Reviews, 4(2), 59-81.
Thum, E. E. (1935). Book of stainless steel. EUA: American Society of Materials.
Vedia, L. A., Svoboda, H. G. (2004). Introducción a la metalurgia de la soldadura. Monografía. Buenos Aires: Ed. Departamento de Mecánica.
Yüksel, N., Sahin, S. (2014). Wear behavior–hardness–microstructure relation of Fe–Cr–C and Fe–Cr–C–B based hardfacing alloys. Materials and Design, 58, 491-498.
Copyright (c) 2021 Tamara M. Ortiz Méndez, Amado Cruz-Crespo, Juan A. Pozo Morejón
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0