Evaluación Energética y Económica de Calefacción de Hogares por Bomba de Calor en Bariloche, Montevideo y Santiago
Energy and Economic Assessment of Household Space Heating by Heat Pumps in Bariloche, Montevideo and Santiago
Resumen
El cambio climático obliga a mejorar la eficiencia del consumo de energía. En este trabajo se desarrolla una metodología de evaluación energética y económica de las ventajas de sustituir sistemas de calefacción tradicionales de gas natural, GLP, o electricidad, por una moderna bomba de calor (inverter). Al ser su eficiencia función de la diferencia de temperaturas entre el ambiente exterior y el interior, la eficiencia varía según la ubicación de la ciudad. De esta manera, se estudia su rendimiento en Bariloche, Santiago de Chile y Montevideo (temperatura media anual de 8,3; 14,6 y 16,3 °C, respectivamente), empleando los siguientes sistemas: 1) aire-aire, instalando varios equipos Split; y 2) aire-agua, instalando una bomba de calor que brinde calefacción por radiadores de agua. Esta metodología permite dimensionar estos sistemas y calcular el ahorro anual, ejemplificándose para una vivienda social de 50 m2. En todos los casos estudiados se alcanzaron reducciones de los consumos y ahorros de moderados a notables (y períodos de repago de la inversión menores a dos años), excepto contra el gas natural en Bariloche y Montevideo. Se discute también cómo su inversión moderada puede constituir una primera solución asequible, frente a la costosa rehabilitación térmica, a fin de obtener viviendas más sustentables.
Descargas
Citas
Bauer, D., Marx, R., Nußbicker-Lux, J., Ochs, F., Heidemann, W., Müller-Steinhagen, H. (2010). German central solar heating plants with seasonal heat storage. Solar Energy, 84(4), 612-623.
Climate-data.org (2019). Climate data for cities worldwide [en línea] disponible en: https://en.climate-data.org/ [consulta: 16 diciembre 2019].
Colclough, S., Griffiths, P. (2016). Financial analysis of an installed small-scale seasonal thermal energy store. Renewable Energy, 86, 422-428.
Díaz, C., Czajkowski, J. (2006). Auditorías energéticas en viviendas de interés social en Río Grande, Tierra del Fuego. Avances en Energías Renovables y Medio Ambiente, 10, 33-38.
Eto, J.H. (1988). On using degree-days to account for the effects of weather on annual energy use in office buildings. Energy and Buildings, 12, 113-127.
Gil, S., Prieto, R. (2013). Categorización racional de usuarios residenciales - herramienta para promover un uso más eficiente del gas. Memorias del encuentro atinoamericano de uso racional y eficiente de la energía – ELUREE 2013. Buenos Aires: Organizado por UNSAM, UBA e INTI, 15-24
González, A., Carlsson-Kanyama, A., Crivelli, C., Gortari, S. (2007). Residential energy use in one-family households with natural gas provision in a city of the Patagonian Andean region. Energy Policy, 35, 2141-2150.
González, A. (2009). Energy subsidies in Argentina lead to inequalities and low thermal efficiency. Energies, 2, 769-788.
González, A. (2013). Management of disaster risks derived from very large fuel subsidies to natural gas in Argentina. Climate Change and Disaster Risk Management, Part 3, 463-473.
González, A. (2014). Casas confortables con mínimo uso de energía: estudio de casos prácticos para Argentina y Chile Bariloche [en línea] disponible en: http://www.ipatec.conicet.gob.ar/casas-confortables-con-minimo-uso-de-energia-estudio-de-casos-practicos-para-argentina-y-chile/ [consulta: 1 junio 2021].
González, A. (2016). El principal limitante para la aceptación de las nuevas tarifas es la baja calidad térmica en las viviendas. Revista Petroquímica, 323, 244-248.
Juanicó, L., González, A. (2008). Thermal efficiency of natural gas balanced-flue space heaters: measurements for commercial devices. Energy and Buildings, 40, 1067-1073.
Juanicó, L., González, A. (2018). Calefacción solar en edificaciones con acumulación en gran reservorio de agua. Revista INVI, 33, 153-172.
Juanicó, L. (2020). Heating houses by using vacuum-tube solar collectors and a small above-ground water tank: a cost-effective solution for maritime climates. Advanced in Building Energy Research, 15, 199-222.
Juanicó, L., Bove, I. (2020). Eficiencia energética en el hogar: el calentador eléctrico con tanque de agua. Revista Técnica de la Facultad de Ingeniería, Universidad del Zulía, 43 (2), 58-64.
Juanicó, L., Bove, I. (2021). Efficient heating of sanitary water with heat pump. ENERLAC Revista de Energía de América Latina y el Caribe, 5(1), 94-104.
Judkoff, R., Neymark, J. (1999). Adaptation of the BESTEST intermodel comparison method for proposed ASHRAE standard 140P: method of test for building energy simulation programs. ASHRAE Transactions SE-99-06-4, 105, 721. Disponible en: www.ashrae.org.
Piechurski, K., Szulgowska-Zgrzywa, M., Danielewicz, J. (2017). The impact of the work under partial load on the energy efficiency of an air-to-water heat pump.. 9th conference on interdisciplinary problems in environmental protection and engineering EKO-DOK. Boguszow: Universidad Politecnica de Breslavia, 1-8.
Sibbitt, B., Mcclenahan, D., Djebbar, R., Kokko, J. (2012). The performance of a high solar fraction seasonal storage district heating system – five years of operation. Energy Procedia, 30, 856-865.
Staffell, I., Brett, D., Brandon, N., Hawkes, A. (2012). A review of domestic heat pumps. Energy & Environmental Science, 5(11), 9291-9306.
Stene, J. (2005). Residential CO2 heat pump system for combined space heating and hot water heating. International Journal of Refrigeration, 28(8), 1259-1265.
Sulaiman, H., Sipowicz, E., Filippin, C., Oga, L. (2020). Energy performance of dwellings in a temperate climate area of Argentina. An architectural proposal. The Open Construction and Building Technology Journal, 14, 1-16.
Vieira, A.S., Beal, C.D., Stewart, R.A. (2014). Residential water heaters in Brisbane, Australia: Thinking beyond technology selection to enhance energy efficiency and level of service. Energy and Buildings, 82, 222-236.
Walls, M. (2006). Energy-efficient terrace houses in Sweden: simulations and measurements, Energy and Buildings, 38, 627-634.
Watson, D. (1997). Time-saver standards for architectural design data. 7th ed. Ciudad: New York, USA; McGraw-Hill.
Winkler, J. (2011). Laboratory test report for Fujitsu 12RLS and Mitsubishi FE12NA mini-split heat pumps [en línea] disponible en: https://www.nrel.gov/docs/fy11osti/52175.pdf [consulta: 1 junio 2021].
Woods, J., Fuller, C. (2014). Estimating base temperatures in econometric models that include degree days. Energy Economics, 45, 166-171. Xiao, B., He, L., Zhang, S., Kong, T., Hu, B., Wang, R.Z. (2020). Comparison and analysis on air-to-air and air-to-water heat pump heating systems. Renewable Energy, 146, 1888-1896.
Zirngibl, J. (2020). Heat pump standard EN 15316-4-2: from compliance to real consumption. REHVA Journal, 57(6), 5-9.
Derechos de autor 2021 Luis Eduardo Juanicó, Italo Bove Vanzulli
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0