De la incertidumbre a la precisión: Inteligencia artificial y su irrupción en la transformación gerencial
Resumen
El artículo explora la irrupción de las aplicaciones emergentes de la inteligencia artificial (IA) en la toma de decisiones gerenciales y la transformación de los modelos tradicionales de gestión en diversos sectores industriales. La investigación destaca cómo la IA ha mejorado la eficiencia y precisión en la gestión empresarial, especialmente en sectores como la manufactura, la salud y las finanzas. Los resultados indican que las tecnologías de IA han optimizado la toma de decisiones a través de algoritmos predictivos, sistemas de recomendación y automatización de procesos. El principal hallazgo del estudio es que la IA ha transformado profundamente los modelos tradicionales, facilitando la descentralización de las decisiones operativas y aumentando la adaptabilidad de las organizaciones. Para llevar a cabo este análisis, el estudio utilizó una revisión sistemática basada en la metodología PRISMA, identificando estudios clave entre 2018 y 2024. La importancia de esta investigación radica en la creciente adopción de IA a nivel mundial, resaltando su relevancia en el contexto mundial, donde las empresas enfrentan desafíos relacionados con la competitividad y la optimización de recursos. El estudio concluye que la integración de la IA en los procesos gerenciales es crucial para mejorar la eficiencia organizacional y enfrentar los desafíos.
Citas
Abdel-Basset, M., Mohamed, R., Alrashdi, I., Sallam, K. M., & Hameed, I. A. (2024). CNN-IKOA: Convolutional neural network with improved Kepler optimization algorithm for image segmentation. Journal of Big Data, 11(13). https://doi.org/10.1186/s40537-023-00858-6
Allahham, M., et al, (2024). Supply chain risks in the age of big data and artificial intelligence. Uncertain Supply Chain Management, 12(4), 399–406. https://doi.org/10.5267/j.uscm.2023.9.012
Andrés González-Moralejo, S. (2024). From COVID-19 to the war in Ukraine: Evidence of a Schumpeterian transformation of food logistics. Agricultural and Food Economics, 12, 8. https://doi.org/10.1186/s40100-024-00300-2
Brekke, T., Lenka, S., Kohtamäki, M., Parida, V., & Solem, B.A.A. (2024). Overcoming barriers to transformation in manufacturing firms: A path-dependence perspective of digital servitization. Review of Managerial Science, 18, 385-412. https://doi.org/10.1007/s11846-023-00641-0
Carl, K. V., & Hinz, O. (2024). What we already know about corporate digital responsibility in IS research: A review and conceptualization of potential CDR activities. Electronic Markets, 34(27). https://doi.org/10.1007/s12525-024-00708-0
Chang, H.J., Bruess, F., & Chong, J.W. (2024). Opportunities and challenges of smart technology for small independent fashion retailers: A reflexive thematic analysis using the technology-organization-environment framework. Fashion and Textiles, 11(26). https://doi.org/10.1186/s40691-024-00391-x
Chen, C.T., Khan, A., & Chen, S.C. (2024). Modeling the impact of BDA-AI on sustainable innovation ambidexterity and environmental performance. Journal of Big Data, 11(124). https://doi.org/10.1186/s40537-024-00995-6
Chu, M., Li, B., & Yu, X. (2024). Identification of key factors of digital transformation of manufacturing companies using hybrid DEMATEL method. Decision Making: Applications in Management and Engineering, 7(1), 380-395. https://doi.org/10.31181/dmame712024931
Csedő, Z. (2023). Sustainability change management in inter-organizational innovation networks. Society and Economy, 45(4), 355–371. https://doi.org/10.1556/204.2023.00011
Da Ros, A., Pennucci, F., & De Rosis, S. (2024). Unlocking organizational change: a deep dive through a data triangulation in healthcare. Management Decision, 11(1), 17-38. https://doi.org/10.1108/MD-06-2023-0898
Del Cerro Martínez, M., Palomo Zurdo, R., & Molina López, M. (2023). Proposal for a generational integration model in Digital Transformation processes: A strategic challenge for a socially inclusive digital economy. REVESCO, 145, e92556. https://doi.org/10.5209/reve.92556
Devarapali, S., Manske, A., Khayamim, R., Jacobs, E., Li, B., Elmi, Z., & Dulebenets, M. A. (2024). Electric tugboat deployment in maritime transportation: Detailed analysis of advantages and disadvantages. Maritime Business Review, 9(3), 263-291. https://doi.org/10.1108/MABR-12-2023-0086
Dyduch, W., Dominiczewska, M., & Kubiczek, J. (2024). Value creation and value capture revisited: Resource, entrepreneurial and relational perspectives. Forum Scientiae Oeconomia, 11(4). https://doi.org/10.23762/FSO_VOL11_NO4_3
Ebrahimi, S., & Matt, C. (2024). Not seeing the (moral) forest for the trees? How task complexity and employees’ expertise affect moral disengagement with discriminatory data analytics recommendations. Journal of Information Technology, 39(3), 477–502. https://doi.org/10.1177/02683962231181148
Gamage, G., De Silva, D., Mills, N., Alahakoon, D., & Manic, M. (2024). Emotion AWARE: An artificial intelligence framework for adaptable, robust, explainable, and multi-granular emotion analysis. Journal of Big Data, 11, 93. https://doi.org/10.1186/s40537-024-00953-2
Hamza, K. A., Alshaabani, A., & Rudnak, I. (2024). Impact of transformational leadership on employees’ affective commitment and intention to support change: Mediation role of innovative behavior. Problems and Perspectives in Management, 22(2), 325-338. https://doi.org/10.21511/ppm.22(2).2024.25
Haputhanthrige, V., et al, (2024). The impact of a skill-driven model on scrum teams in software projects. Systems, 12(149). https://doi.org/10.3390/systems12050149
Herzog, B. (2024). Is artificial intelligence a hazardous technology? Economic trade-off model. European Journal of Futures Research, 12, 18. https://doi.org/10.1186/s40309-024-00241-5
Hine, E., et al, (2024). Supporting trustworthy AI through machine unlearning. Science and Engineering Ethics, 30(43). https://doi.org/10.1007/s11948-024-00500-5
Huang, Q., & Chen, J. (2024). Enhancing academic performance prediction with temporal graph networks for massive open online courses. Journal of Big Data, 11, 52. https://doi.org/10.1186/s40537-024-00918-5
Hüllermeier, E., & Słowiński, R. (2024). Preference learning and multiple criteria decision aiding: Differences, commonalities, and synergies—part II. 4OR, 22(313-349). https://doi.org/10.1007/s10288-023-00561-5
Intalar, N., Ueki, Y., & Jeenanunta, C. (2024). Enhancing competitiveness: Driving and facilitating factors for Industry 4.0 adoption in Thai manufacturing. Economies, 12(8), 210. https://doi.org/10.3390/economies12080210
Jakobsen, H. S., Brix, J., & Jakobsen, R. S. (2024). Unraveling data from an idea management system of 11 radical innovation portfolios: key lessons and avenues for artificial intelligence integration. Journal of Innovation and Entrepreneurship, 13(9). https://doi.org/10.1186/s13731-024-00368-6
Ji, H., Sheng, S., & Wan, J. (2024). Symbolic or substantive? The effects of the digital transformation process on environmental disclosure. Systems, 12(197). https://doi.org/10.3390/systems12060197
Li, H., Tian, H., Liu, X., & You, J. (2024). Transitioning to low-carbon agriculture: the non-linear role of digital inclusive finance in China’s agricultural carbon emissions. Humanities and Social Sciences Communications, 11(818). https://doi.org/10.1057/s41599-024-03354-1
Maes, G., & Van Hootegem, G. (2022). Power and politics in different change discourses. Administrative Sciences, 12(64). https://doi.org/10.3390/admsci12020064
Majnoor, N., & Vinayagam, K. (2023). The ascendency of the paradigm shift from organizational change management to change agility. International Journal of Professional Business Review, 8(4), e01151. https://doi.org/10.26668/businessreview/2023.v8i4.1151
Maksymova, I., Kurilyak, V., Mietule, I., Arbidane, I., & Kurilyak, M. (2024). Digitally driven model of a climate-neutral economy in terms of global financial capacity. Financial and Credit Activity: Problems of Theory and Practice, 3(56), 334-356. https://doi.org/10.55643/fcaptp.3.56.2024.4399
Marcel, A., Ramadhan, A., Trisetyarso, A., Abdurachman, E., & Zarlis, M. (2023). Digital transformation adoption: An extended step-by-step framework. Journal of System and Management Sciences, 13(2), 45-63. https://doi.org/10.33168/JSMS.2023.0204
McLaren, T. A. S., van der Hoorn, B., & Fein, E. C. (2023). Why vilifying the status quo can derail a change effort: Kotter’s contradiction, and theory adaptation. Journal of Change Management, 23(1), 93-111. https://doi.org/10.1080/14697017.2022.2137835
Miklosik, A., & Krah, A.B. (2023). Pinpointing the driving forces propelling digital business transformation. Journal of Risk and Financial Management, 16(488). https://doi.org/10.3390/jrfm16110488
Moosa, M.D., Moosa, V., & Faheem, S. (2023). Prevailing leadership styles in change management: Evidences from existing research. International Journal of Professional Business Review, 8(5), e01289. https://doi.org/10.26668/businessreview/2023.v8i5.1289
Qu, J., Qin, X., Xie, Z., Qian, J., Zhang, Y., Sun, X., ... & Hong, J. (2024). Establishment of an automatic diagnosis system for corneal endothelium diseases using artificial intelligence. Journal of Big Data, 11, 67. https://doi.org/10.1186/s40537-024-00913-w
Recskó, M., & Aranyossy, M. (2024). User acceptance of social network-backed cryptocurrency: a unified theory of acceptance and use of technology (UTAUT)-based analysis. Financial Innovation, 10(57). https://doi.org/10.1186/s40854-023-00511-4
Trujillano, F., Jimenez, G., Manrique, E., Kahamba, N. F., Okumu, F., Apollinaire, N., Carrasco-Escobar, G., Barrett, B., & Fornace, K. (2024). Using image segmentation models to analyze high-resolution earth observation data: new tools to monitor disease risks in changing environments. International Journal of Health Geographics, 23(13). https://doi.org/10.1186/s12942-024-00371-w
Wissuwa, F., & Durach, C. F. (2023). Turning German automotive supply chains into sponsors for sustainability. Production Planning & Control, 34(2), 159-172. https://doi.org/10.1080/09537287.2021.1893405
Wiechers, H. E. (2024). Unraveling Disruptions: How Employees Pick Up Signals of Change. Group & Organization Management., 49(4), 1045–1068. https://doi.org/10.1177/10596011231172658
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.