De la incertidumbre a la precisión: Inteligencia artificial y su irrupción en la transformación gerencial

Palabras clave: inteligencia artificial, toma de decisiones, gestión empresarial, modelos de gestión, innovación tecnológica

Resumen

El artículo explora la irrupción de las aplicaciones emergentes de la inteligencia artificial (IA) en la toma de decisiones gerenciales y la transformación de los modelos tradicionales de gestión en diversos sectores industriales. La investigación destaca cómo la IA ha mejorado la eficiencia y precisión en la gestión empresarial, especialmente en sectores como la manufactura, la salud y las finanzas. Los resultados indican que las tecnologías de IA han optimizado la toma de decisiones a través de algoritmos predictivos, sistemas de recomendación y automatización de procesos. El principal hallazgo del estudio es que la IA ha transformado profundamente los modelos tradicionales, facilitando la descentralización de las decisiones operativas y aumentando la adaptabilidad de las organizaciones. Para llevar a cabo este análisis, el estudio utilizó una revisión sistemática basada en la metodología PRISMA, identificando estudios clave entre 2018 y 2024. La importancia de esta investigación radica en la creciente adopción de IA a nivel mundial, resaltando su relevancia en el contexto mundial, donde las empresas enfrentan desafíos relacionados con la competitividad y la optimización de recursos. El estudio concluye que la integración de la IA en los procesos gerenciales es crucial para mejorar la eficiencia organizacional y enfrentar los desafíos.

Biografía del autor/a

Charles Pastor Torres Vásquez

Doctor en Educación; Maestro en Docencia Universitaria, Licenciado en Educación Secundaria, en la Especialidad de Educación Física con Mención en Futbol, Docente de Pre y Post Grado Universidad Nacional Federico Villareal. Lima Perú. Correo: ctorresv@unfv.edu.pe; ORCID ID: https://orcid.org/0000-0002-5716-2575

Regina Terezzina Martínez García

Magister en Educación con Mención en Evaluación Y Acreditación de la Calidad de la Educación; Licenciada en Educación Especialidad: Lenguaje y Literatura, de la Universidad Nacional Mayor de San Marcos, Docente de Pre y Post Grado Universidad Nacional Federico Villareal. Lima Perú. Correo: rmartinezg@unfv.edu.pe; ORCID ID: https://orcid.org/0000-0002-8693-8459

Ana María Holgado Quispe

Doctora en Educación, Maestra en Docencia Universitaria y Gestión Educativa, Licenciada en Educación Secundaria. Especialidad: Matemática y Física. Docente de Pre y Post Grado Universidad Nacional Federico Villareal. Lima Perú. Correo: aholgado@unfv.edu.pe ORCID ID: https://orcid.org/0000-0002-7510-9188

Miriam Corina Castro Rojas

Docente Investigador RENACYT-Nivel IV, Doctora en Educación, Maestra en Administración y Servicios de Salud, Especialidad: Con Mención En Gestión de la Calidad. Médico Cirujano Especialista, Expedida Por La U.P. Cayetano H. en Administración de Salud. Docente de Pre y Post Grado Universidad Nacional Federico Villareal. Lima Perú. Correo: mcastror@unfv.edu.pe ORCID ID: https://orcid.org/0000-0003-3547-9026

Citas

Abawari, A. M., et al, (2024). The effects of organizational culture on change management in Oromia public sectors. Cogent Business & Management, 11(1), 2375623. https://doi.org/10.1080/23311975.2024.2375623

Abdel-Basset, M., Mohamed, R., Alrashdi, I., Sallam, K. M., & Hameed, I. A. (2024). CNN-IKOA: Convolutional neural network with improved Kepler optimization algorithm for image segmentation. Journal of Big Data, 11(13). https://doi.org/10.1186/s40537-023-00858-6

Allahham, M., et al, (2024). Supply chain risks in the age of big data and artificial intelligence. Uncertain Supply Chain Management, 12(4), 399–406. https://doi.org/10.5267/j.uscm.2023.9.012

Andrés González-Moralejo, S. (2024). From COVID-19 to the war in Ukraine: Evidence of a Schumpeterian transformation of food logistics. Agricultural and Food Economics, 12, 8. https://doi.org/10.1186/s40100-024-00300-2

Brekke, T., Lenka, S., Kohtamäki, M., Parida, V., & Solem, B.A.A. (2024). Overcoming barriers to transformation in manufacturing firms: A path-dependence perspective of digital servitization. Review of Managerial Science, 18, 385-412. https://doi.org/10.1007/s11846-023-00641-0

Carl, K. V., & Hinz, O. (2024). What we already know about corporate digital responsibility in IS research: A review and conceptualization of potential CDR activities. Electronic Markets, 34(27). https://doi.org/10.1007/s12525-024-00708-0

Chang, H.J., Bruess, F., & Chong, J.W. (2024). Opportunities and challenges of smart technology for small independent fashion retailers: A reflexive thematic analysis using the technology-organization-environment framework. Fashion and Textiles, 11(26). https://doi.org/10.1186/s40691-024-00391-x

Chen, C.T., Khan, A., & Chen, S.C. (2024). Modeling the impact of BDA-AI on sustainable innovation ambidexterity and environmental performance. Journal of Big Data, 11(124). https://doi.org/10.1186/s40537-024-00995-6

Chu, M., Li, B., & Yu, X. (2024). Identification of key factors of digital transformation of manufacturing companies using hybrid DEMATEL method. Decision Making: Applications in Management and Engineering, 7(1), 380-395. https://doi.org/10.31181/dmame712024931

Csedő, Z. (2023). Sustainability change management in inter-organizational innovation networks. Society and Economy, 45(4), 355–371. https://doi.org/10.1556/204.2023.00011

Da Ros, A., Pennucci, F., & De Rosis, S. (2024). Unlocking organizational change: a deep dive through a data triangulation in healthcare. Management Decision, 11(1), 17-38. https://doi.org/10.1108/MD-06-2023-0898

Del Cerro Martínez, M., Palomo Zurdo, R., & Molina López, M. (2023). Proposal for a generational integration model in Digital Transformation processes: A strategic challenge for a socially inclusive digital economy. REVESCO, 145, e92556. https://doi.org/10.5209/reve.92556

Devarapali, S., Manske, A., Khayamim, R., Jacobs, E., Li, B., Elmi, Z., & Dulebenets, M. A. (2024). Electric tugboat deployment in maritime transportation: Detailed analysis of advantages and disadvantages. Maritime Business Review, 9(3), 263-291. https://doi.org/10.1108/MABR-12-2023-0086

Dyduch, W., Dominiczewska, M., & Kubiczek, J. (2024). Value creation and value capture revisited: Resource, entrepreneurial and relational perspectives. Forum Scientiae Oeconomia, 11(4). https://doi.org/10.23762/FSO_VOL11_NO4_3

Ebrahimi, S., & Matt, C. (2024). Not seeing the (moral) forest for the trees? How task complexity and employees’ expertise affect moral disengagement with discriminatory data analytics recommendations. Journal of Information Technology, 39(3), 477–502. https://doi.org/10.1177/02683962231181148

Gamage, G., De Silva, D., Mills, N., Alahakoon, D., & Manic, M. (2024). Emotion AWARE: An artificial intelligence framework for adaptable, robust, explainable, and multi-granular emotion analysis. Journal of Big Data, 11, 93. https://doi.org/10.1186/s40537-024-00953-2

Hamza, K. A., Alshaabani, A., & Rudnak, I. (2024). Impact of transformational leadership on employees’ affective commitment and intention to support change: Mediation role of innovative behavior. Problems and Perspectives in Management, 22(2), 325-338. https://doi.org/10.21511/ppm.22(2).2024.25

Haputhanthrige, V., et al, (2024). The impact of a skill-driven model on scrum teams in software projects. Systems, 12(149). https://doi.org/10.3390/systems12050149

Herzog, B. (2024). Is artificial intelligence a hazardous technology? Economic trade-off model. European Journal of Futures Research, 12, 18. https://doi.org/10.1186/s40309-024-00241-5

Hine, E., et al, (2024). Supporting trustworthy AI through machine unlearning. Science and Engineering Ethics, 30(43). https://doi.org/10.1007/s11948-024-00500-5

Huang, Q., & Chen, J. (2024). Enhancing academic performance prediction with temporal graph networks for massive open online courses. Journal of Big Data, 11, 52. https://doi.org/10.1186/s40537-024-00918-5

Hüllermeier, E., & Słowiński, R. (2024). Preference learning and multiple criteria decision aiding: Differences, commonalities, and synergies—part II. 4OR, 22(313-349). https://doi.org/10.1007/s10288-023-00561-5

Intalar, N., Ueki, Y., & Jeenanunta, C. (2024). Enhancing competitiveness: Driving and facilitating factors for Industry 4.0 adoption in Thai manufacturing. Economies, 12(8), 210. https://doi.org/10.3390/economies12080210

Jakobsen, H. S., Brix, J., & Jakobsen, R. S. (2024). Unraveling data from an idea management system of 11 radical innovation portfolios: key lessons and avenues for artificial intelligence integration. Journal of Innovation and Entrepreneurship, 13(9). https://doi.org/10.1186/s13731-024-00368-6

Ji, H., Sheng, S., & Wan, J. (2024). Symbolic or substantive? The effects of the digital transformation process on environmental disclosure. Systems, 12(197). https://doi.org/10.3390/systems12060197

Li, H., Tian, H., Liu, X., & You, J. (2024). Transitioning to low-carbon agriculture: the non-linear role of digital inclusive finance in China’s agricultural carbon emissions. Humanities and Social Sciences Communications, 11(818). https://doi.org/10.1057/s41599-024-03354-1

Maes, G., & Van Hootegem, G. (2022). Power and politics in different change discourses. Administrative Sciences, 12(64). https://doi.org/10.3390/admsci12020064

Majnoor, N., & Vinayagam, K. (2023). The ascendency of the paradigm shift from organizational change management to change agility. International Journal of Professional Business Review, 8(4), e01151. https://doi.org/10.26668/businessreview/2023.v8i4.1151

Maksymova, I., Kurilyak, V., Mietule, I., Arbidane, I., & Kurilyak, M. (2024). Digitally driven model of a climate-neutral economy in terms of global financial capacity. Financial and Credit Activity: Problems of Theory and Practice, 3(56), 334-356. https://doi.org/10.55643/fcaptp.3.56.2024.4399

Marcel, A., Ramadhan, A., Trisetyarso, A., Abdurachman, E., & Zarlis, M. (2023). Digital transformation adoption: An extended step-by-step framework. Journal of System and Management Sciences, 13(2), 45-63. https://doi.org/10.33168/JSMS.2023.0204

McLaren, T. A. S., van der Hoorn, B., & Fein, E. C. (2023). Why vilifying the status quo can derail a change effort: Kotter’s contradiction, and theory adaptation. Journal of Change Management, 23(1), 93-111. https://doi.org/10.1080/14697017.2022.2137835

Miklosik, A., & Krah, A.B. (2023). Pinpointing the driving forces propelling digital business transformation. Journal of Risk and Financial Management, 16(488). https://doi.org/10.3390/jrfm16110488

Moosa, M.D., Moosa, V., & Faheem, S. (2023). Prevailing leadership styles in change management: Evidences from existing research. International Journal of Professional Business Review, 8(5), e01289. https://doi.org/10.26668/businessreview/2023.v8i5.1289

Qu, J., Qin, X., Xie, Z., Qian, J., Zhang, Y., Sun, X., ... & Hong, J. (2024). Establishment of an automatic diagnosis system for corneal endothelium diseases using artificial intelligence. Journal of Big Data, 11, 67. https://doi.org/10.1186/s40537-024-00913-w

Recskó, M., & Aranyossy, M. (2024). User acceptance of social network-backed cryptocurrency: a unified theory of acceptance and use of technology (UTAUT)-based analysis. Financial Innovation, 10(57). https://doi.org/10.1186/s40854-023-00511-4

Trujillano, F., Jimenez, G., Manrique, E., Kahamba, N. F., Okumu, F., Apollinaire, N., Carrasco-Escobar, G., Barrett, B., & Fornace, K. (2024). Using image segmentation models to analyze high-resolution earth observation data: new tools to monitor disease risks in changing environments. International Journal of Health Geographics, 23(13). https://doi.org/10.1186/s12942-024-00371-w

Wissuwa, F., & Durach, C. F. (2023). Turning German automotive supply chains into sponsors for sustainability. Production Planning & Control, 34(2), 159-172. https://doi.org/10.1080/09537287.2021.1893405

Wiechers, H. E. (2024). Unraveling Disruptions: How Employees Pick Up Signals of Change. Group & Organization Management., 49(4), 1045–1068. https://doi.org/10.1177/10596011231172658
Publicado
2024-12-15
Cómo citar
Torres Vásquez, C. P., Martínez García, R. T., Holgado Quispe, A. M., & Castro Rojas, M. C. (2024). De la incertidumbre a la precisión: Inteligencia artificial y su irrupción en la transformación gerencial. Revista Venezolana De Gerencia, 29(12), 1558-1579. https://doi.org/10.52080/rvgluz.29.e12.43

Artículos más leídos del mismo autor/a