Propriedades físicas de batatas fritas feitas com farinhas de quinoa e de casca de opuntia

Palavras-chave: substituto de batatas fritas, fritura, farinha de quinoa, casca de opuntia, extrusão

Resumo

Grande parte da população mundial tem o hábito de consumir regularmente fast-food. A maioria dos menus de fast-food tem as batatas fritas como acompanhamento essencial. O seu consumo não representa um maior aporte nutricional, além disso o processo de fritura incorpora uma quantidade considerável de óleo às batatas fritas, aumentando os riscos de doenças como a obesidade. O objetivo deste trabalho de pesquisa foi avaliar as propriedades físicas e texturais de um substituto da batata frita, elaborado por tecnologia de extrusão com a incorporação de farinha de um cereal nutritivo como a quinoa e farinha da casca de Opuntia em sua formulação. Os resultados indicam que é possível obter zaragatoas de um substituto da batata que podem ser fritas por imersão em óleo a 180 °C, tal como um produto comercial pré-frito. A firmeza dos substitutos da batata frita é 30 % maior do que a do produto comercial, enquanto a sua taxa de absorção de óleo é três vezes menor do que esta (6.25 %). Provavelmente a fibra presente na farinha de casca de Opuntia e a proteína presente na farinha de quinoa podem causar este fenómeno. Conclui-se que, é possível fabricar produtos semelhantes à batata frita tradicional e comercial, de modo que, sem alterar os hábitos de consumo da população, possa permitir-lhes uma alimentação mais saudável.

Downloads

Não há dados estatísticos.

Referências

Abd Rahman, N. A., Abdul Razak, S. Z., Lokmanalhakim, L. A., Taip, F. S., & Mustapa Kamal, S. M. (2017). Response surface optimization for hot air-frying technique and its effects on the quality of sweet potato snack. Journal of Food Process Engineering, 40(4), e12507. https://doi.org/https://doi.org/10.1111/jfpe.12507
Adedeji, A. A., & Ngadi, M. (2018). Impact of freezing method, frying and storage on fat absorption kinetics and structural changes of parfried potato. Journal of Food Engineering, 218, 24–32. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2017.08.024
Alam, M. S., Kaur, J., Khaira, H., & Gupta, K. (2016). Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Critical Reviews in Food Science and Nutrition, 56(3), 445–473. https://doi.org/10.1080/10408398.2013.779568
Al-Khusaibi, M., Ahmad Tarmizi, A. H., & Niranjan, K. (2015). On the Possibility of Nonfat Frying using Molten Glucose. Journal of Food Science, 80(1), E66–E72. https://doi.org/https://doi.org/10.1111/1750-3841.12713
Almendares, L., García, V. A., & Román, J. M. (2021). Development of an extruded food product similar to fried potatoes, based on by-products of potatoes and rice. physicochemical and microbiological evaluation. Food Science and Technology, 41(2), 359–364. https://doi.org/10.1590/fst.03820
Beals, K. A. (2019). Potatoes, Nutrition and Health. American Journal of Potato Research, 96(2), 102–110. https://doi.org/10.1007/s12230-018-09705-4
Bhuiyan, M. H. R., & Ngadi, M. (2024). Post-fry oil distribution in batter coated fried foods. LWT, 194, 115819. https://doi.org/10.1016/J.LWT.2024.115819
Bouazizi, S., Montevecchi, G., Antonelli, A., & Hamdi, M. (2020). Effects of prickly pear (Opuntia ficus-indica L.) peel flour as an innovative ingredient in biscuits formulation. LWT - Food Science and Technology, 124, 109155. https://doi.org/https://doi.org/10.1016/j.lwt.2020.109155
Daniloski, D., D’Cunha, N. M., Speer, H., McKune, A. J., Alexopoulos, N., Panagiotakos, D. B., Petkoska, A. T., & Naumovski, N. (2022). Recent developments on Opuntia spp., their bioactive composition, nutritional values, and health effects. Food Bioscience, 47, 101665. https://doi.org/https://doi.org/10.1016/j.fbio.2022.101665
Dehghannya, J., & Ngadi, M. (2023). The application of pretreatments for producing low-fat fried foods: A review. Trends in Food Science & Technology, 140, 104150. https://doi.org/https://doi.org/10.1016/j.tifs.2023.104150
Esan, T. A., Sobukola, O. P., Sanni, L. O., Bakare, H. A., & Munoz, L. (2015). Process optimization by response surface methodology and quality attributes of vacuum fried yellow fleshed sweetpotato (Ipomoea batatas L.) chips. Food and Bioproducts Processing, 95, 27–37. https://doi.org/https://doi.org/10.1016/j.fbp.2015.03.008
Farkas, B. E., Singh, R. P., & Rumsey, T. R. (1996). Modeling heat and mass transfer in immersion frying. I, model development. Journal of Food Engineering, 29(2), 211–226. https://doi.org/https://doi.org/10.1016/0260-8774(95)00072-0
Ghaderi, A., Dehghannya, J., & Ghanbarzadeh, B. (2018). Momentum, heat and mass transfer enhancement during deep-fat frying process of potato strips: Influence of convective oil temperature. International Journal of Thermal Sciences, 134, 485–499. https://doi.org/https://doi.org/10.1016/j.ijthermalsci.2018.08.035
Grahl, S., Palanisamy, M., Strack, M., Meier-Dinkel, L., Toepfl, S., & Mörlein, D. (2018). Towards more sustainable meat alternatives: How technical parameters affect the sensory properties of extrusion products derived from soy and algae. Journal of Cleaner Production, 198, 962–971. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.07.041
Gutiérrez-Silva, G., Vásquez-Lara, F., Heredia-Sandoval, N. G., & Islas-Rubio, A. R. (2023). Effect of High-Protein and High-Fiber Breaders on Oil Absorption and Quality Attributes in Chicken Nuggets. Foods, 12(24), 4463. https://doi.org/10.3390/foods12244463
Guy, R. (2001). Extrusion Cooking: Technologies and Applications (R. Guy, Ed.; Elsevier, pp. 161–181). Woodhead Publishing Series in Food Science, Technology and Nutrition.
Heredia, A., Castelló, M. L., Argüelles, A., & Andrés, A. (2014). Evolution of mechanical and optical properties of French fries obtained by hot air-frying. LWT - Food Science and Technology, 57(2), 755–760. https://doi.org/https://doi.org/10.1016/j.lwt.2014.02.038
Hu, C., He, Y., Zhang, W., & He, J. (2024). Potato proteins for technical applications: Nutrition, isolation, modification and functional properties - A review. Innovative Food Science & Emerging Technologies, 91, 103533. https://doi.org/https://doi.org/10.1016/j.ifset.2023.103533
Martin, A., Osen, R., Karbstein, H. P., & Emin, M. A. (2021). Linking Expansion Behaviour of Extruded Potato Starch/Rapeseed Press Cake Blends to Rheological and Technofunctional Properties. Polymers, 13(2), 215. https://doi.org/10.3390/polym13020215
Medina, W., Skurtys, O., & Aguilera, J. M. (2010). Study on image analysis application for identification Quinoa seeds (Chenopodium quinoa Willd) geographical provenance. LWT - Food Science and Technology, 43(2), 238–246. https://doi.org/10.1016/j.lwt.2009.07.010
Medina, W. T., de la Llera, A. A., Condori, J. L., Aguilera, J. M., Llera, A. De, & Condori, J. L. (2011). Physical Properties and Microstructural Changes during Soaking of Individual Corn and Quinoa Breakfast Flakes. Journal of Food Science, 76(3), 254–265. https://doi.org/10.1111/j.1750-3841.2011.02054.x
Mohamed Latif, N. A., Mat Ropi, A. A., Dos Mohamad, A. M., & Shaharuddin, S. (2020). Fat reduction and characteristic enhancement of edible composite coating (Pectin-Maltodextrin) on fried potato chips. Materials Today: Proceedings, 31, A79–A84. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.659
Ochoa-Velasco, C. E., Palestina-Rivera, J., Ávila-Sosa, R., Navarro-Cruz, A. R., Vera-López, O., Lazcano-Hernández, M. A., & Hernández-Carranza, P. (2022). Use of green (Opuntia megacantha) and red (Opuntia ficus-indica L.) cactus pear peels for developing a supplement rich in antioxidants, fiber, and Lactobacillus rhamnosus. Food Science and Technology, 42. https://doi.org/10.1590/fst.101421
Parikh, A., & Takhar, P. S. (2016). Comparison of Microwave and Conventional Frying on Quality Attributes and Fat Content of Potatoes. Journal of Food Science, 81(11), E2743–E2755. https://doi.org/10.1111/1750-3841.13498
Rahimi, J., Adewale, P., Ngadi, M., Agyare, K., & Koehler, B. (2017). Changes in the textural and thermal properties of batter coated fried potato strips during post frying holding. Food and Bioproducts Processing, 102, 136–143. https://doi.org/https://doi.org/10.1016/j.fbp.2016.12.013
Ramadan, M. F., & Mörsel, J.-T. (2003). Recovered lipids from prickly pear [Opuntia ficus-indica (L.) Mill] peel: a good source of polyunsaturated fatty acids, natural antioxidant vitamins and sterols. Food Chemistry, 83(3), 447–456. https://doi.org/https://doi.org/10.1016/S0308-8146(03)00128-6
Sakonidou, E. P., Karapantsios, T. D., & Raphaelides, S. N. (2003). Mass transfer limitations during starch gelatinization. Carbohydrate Polymers, 53, 53–61. https://doi.org/10.1016/S0144-8617(03)00010-9
Salehi, F., Ghazvineh, S., & Amiri, M. (2024). Effect of basil seed gum coating and ultrasound pretreatment on frying time, oil uptake, hardness, color indexes, and sensory properties of potato slices. Ultrasonics Sonochemistry, 110, 107035. https://doi.org/https://doi.org/10.1016/j.ultsonch.2024.107035
Sandoval, A. J., Nuñez, M., Müller, A. J., Valle, G. Della, & Lourdin, D. (2009). Glass transition temperatures of a ready to eat breakfast cereal formulation and its main components determined by DSC and DMTA. Carbohydrate Polymers, 76(4), 528–534. https://doi.org/https://doi.org/10.1016/j.carbpol.2008.11.019
Teruel, M. del R., Gordon, M., Linares, M. B., Garrido, M. D., Ahromrit, A., & Niranjan, K. (2015). A Comparative Study of the Characteristics of French Fries Produced by Deep Fat Frying and Air Frying. Journal of Food Science, 80(2), E349–E358. https://doi.org/10.1111/1750-3841.12753
Tian, J., Chen, S., Shi, J., Chen, J., Liu, D., Cai, Y., Ogawa, Y., & Ye, X. (2017). Microstructure and digestibility of potato strips produced by conventional frying and air-frying: An in vitro study. Food Structure, 14, 30–35. https://doi.org/https://doi.org/10.1016/j.foostr.2017.06.001
Wang, Q.-L., Yang, Q., Kong, X.-P., & Chen, H.-Q. (2024). The addition of resistant starch and protein to the batter reduces oil uptake and improves the quality of the fried batter-coated nuts. Food Chemistry, 438, 137992. https://doi.org/https://doi.org/10.1016/j.foodchem.2023.137992
Yan, F., Li, N., & Hirota, K. (2021). QHSL: A quantum hue, saturation, and lightness color model. Information Sciences, 577, 196–213. https://doi.org/10.1016/j.ins.2021.06.077
Publicado
2025-01-09
Como Citar
Guerra, R., Leon, A., Manzaneda, E., Apaza, E., Sucasaca, A., & Medina, W. (2025). Propriedades físicas de batatas fritas feitas com farinhas de quinoa e de casca de opuntia. Revista Da Faculdade De Agronomia Da Universidade De Zulia, 42(1), e254207. Obtido de https://produccioncientificaluz.org/index.php/agronomia/article/view/43239
Secção
Tecnologia de Alimentos