Propiedades físicas de papas fritas elaboradas con harinas de quinua y cáscara de tuna

Palabras clave: sucedáneo de papas fritas, fritura, harina de quinua, cáscara de tuna, extrusión

Resumen

Gran parte de la población mundial consume habitualmente comida rápida. La mayoría de estos menús tienen como acompañante a las papas fritas. Su consumo no representa mayor aporte nutricional, además el proceso de fritura incorpora una cantidad considerable de aceite a las papas fritas incrementando los riesgos de enfermedades como la obesidad. El objetivo del presente trabajo fue evaluar las propiedades físicas y texturales de un sucedáneo de papas fritas elaborado mediante tecnología de extrusión con la incorporación de harinas de un cereal nutritivo como la quinua y de cáscara de tuna en su formulación. El color y la porosidad se evaluaron mediante análisis de imágenes. La textura mediante pruebas de compresión mecánica con una máquina universal de ensayos Instron y el índice de absorción de aceite mediante un método de compresión modificado. Se obtuvieron bastoncillos de un sucedáneo de papas que fueron freídos por inmersión en aceite a 180 °C al igual que un producto prefrito comercial. La firmeza de los bastoncillos (4,5 N) es 30 % superior al producto comercial, mientras que el índice de absorción de aceite (6,25 %) de los productos obtenidos es tres veces inferior. Este fenómeno pudiera ser debido al contenido de fibra presente en la harina de cáscara de tuna y de proteína en la harina de quinua. Se concluye que, es posible elaborar productos similares a las papas fritas tradicionales y comerciales, de modo que, sin alterar los hábitos de consumo de la población, pueda permitir la ingesta de alimentos más saludables.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abd Rahman, N. A., Abdul Razak, S. Z., Lokmanalhakim, L. A., Taip, F. S., & Mustapa Kamal, S. M. (2017). Response surface optimization for hot air-frying technique and its effects on the quality of sweet potato snack. Journal of Food Process Engineering, 40(4), e12507. https://doi.org/https://doi.org/10.1111/jfpe.12507
Adedeji, A. A., & Ngadi, M. (2018). Impact of freezing method, frying and storage on fat absorption kinetics and structural changes of parfried potato. Journal of Food Engineering, 218, 24–32. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2017.08.024
Alam, M. S., Kaur, J., Khaira, H., & Gupta, K. (2016). Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Critical Reviews in Food Science and Nutrition, 56(3), 445–473. https://doi.org/10.1080/10408398.2013.779568
Al-Khusaibi, M., Ahmad Tarmizi, A. H., & Niranjan, K. (2015). On the Possibility of Nonfat Frying using Molten Glucose. Journal of Food Science, 80(1), E66–E72. https://doi.org/https://doi.org/10.1111/1750-3841.12713
Almendares, L., García, V. A., & Román, J. M. (2021). Development of an extruded food product similar to fried potatoes, based on by-products of potatoes and rice. physicochemical and microbiological evaluation. Food Science and Technology, 41(2), 359–364. https://doi.org/10.1590/fst.03820
Beals, K. A. (2019). Potatoes, Nutrition and Health. American Journal of Potato Research, 96(2), 102–110. https://doi.org/10.1007/s12230-018-09705-4
Bhuiyan, M. H. R., & Ngadi, M. (2024). Post-fry oil distribution in batter coated fried foods. LWT, 194, 115819. https://doi.org/10.1016/J.LWT.2024.115819
Bouazizi, S., Montevecchi, G., Antonelli, A., & Hamdi, M. (2020). Effects of prickly pear (Opuntia ficus-indica L.) peel flour as an innovative ingredient in biscuits formulation. LWT - Food Science and Technology, 124, 109155. https://doi.org/https://doi.org/10.1016/j.lwt.2020.109155
Daniloski, D., D’Cunha, N. M., Speer, H., McKune, A. J., Alexopoulos, N., Panagiotakos, D. B., Petkoska, A. T., & Naumovski, N. (2022). Recent developments on Opuntia spp., their bioactive composition, nutritional values, and health effects. Food Bioscience, 47, 101665. https://doi.org/https://doi.org/10.1016/j.fbio.2022.101665
Dehghannya, J., & Ngadi, M. (2023). The application of pretreatments for producing low-fat fried foods: A review. Trends in Food Science & Technology, 140, 104150. https://doi.org/https://doi.org/10.1016/j.tifs.2023.104150
Esan, T. A., Sobukola, O. P., Sanni, L. O., Bakare, H. A., & Munoz, L. (2015). Process optimization by response surface methodology and quality attributes of vacuum fried yellow fleshed sweetpotato (Ipomoea batatas L.) chips. Food and Bioproducts Processing, 95, 27–37. https://doi.org/https://doi.org/10.1016/j.fbp.2015.03.008
Farkas, B. E., Singh, R. P., & Rumsey, T. R. (1996). Modeling heat and mass transfer in immersion frying. I, model development. Journal of Food Engineering, 29(2), 211–226. https://doi.org/https://doi.org/10.1016/0260-8774(95)00072-0
Ghaderi, A., Dehghannya, J., & Ghanbarzadeh, B. (2018). Momentum, heat and mass transfer enhancement during deep-fat frying process of potato strips: Influence of convective oil temperature. International Journal of Thermal Sciences, 134, 485–499. https://doi.org/https://doi.org/10.1016/j.ijthermalsci.2018.08.035
Grahl, S., Palanisamy, M., Strack, M., Meier-Dinkel, L., Toepfl, S., & Mörlein, D. (2018). Towards more sustainable meat alternatives: How technical parameters affect the sensory properties of extrusion products derived from soy and algae. Journal of Cleaner Production, 198, 962–971. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.07.041
Gutiérrez-Silva, G., Vásquez-Lara, F., Heredia-Sandoval, N. G., & Islas-Rubio, A. R. (2023). Effect of High-Protein and High-Fiber Breaders on Oil Absorption and Quality Attributes in Chicken Nuggets. Foods, 12(24), 4463. https://doi.org/10.3390/foods12244463
Guy, R. (2001). Extrusion Cooking: Technologies and Applications (R. Guy, Ed.; Elsevier, pp. 161–181). Woodhead Publishing Series in Food Science, Technology and Nutrition.
Heredia, A., Castelló, M. L., Argüelles, A., & Andrés, A. (2014). Evolution of mechanical and optical properties of French fries obtained by hot air-frying. LWT - Food Science and Technology, 57(2), 755–760. https://doi.org/https://doi.org/10.1016/j.lwt.2014.02.038
Hu, C., He, Y., Zhang, W., & He, J. (2024). Potato proteins for technical applications: Nutrition, isolation, modification and functional properties - A review. Innovative Food Science & Emerging Technologies, 91, 103533. https://doi.org/https://doi.org/10.1016/j.ifset.2023.103533
Martin, A., Osen, R., Karbstein, H. P., & Emin, M. A. (2021). Linking Expansion Behaviour of Extruded Potato Starch/Rapeseed Press Cake Blends to Rheological and Technofunctional Properties. Polymers, 13(2), 215. https://doi.org/10.3390/polym13020215
Medina, W., Skurtys, O., & Aguilera, J. M. (2010). Study on image analysis application for identification Quinoa seeds (Chenopodium quinoa Willd) geographical provenance. LWT - Food Science and Technology, 43(2), 238–246. https://doi.org/10.1016/j.lwt.2009.07.010
Medina, W. T., de la Llera, A. A., Condori, J. L., Aguilera, J. M., Llera, A. De, & Condori, J. L. (2011). Physical Properties and Microstructural Changes during Soaking of Individual Corn and Quinoa Breakfast Flakes. Journal of Food Science, 76(3), 254–265. https://doi.org/10.1111/j.1750-3841.2011.02054.x
Mohamed Latif, N. A., Mat Ropi, A. A., Dos Mohamad, A. M., & Shaharuddin, S. (2020). Fat reduction and characteristic enhancement of edible composite coating (Pectin-Maltodextrin) on fried potato chips. Materials Today: Proceedings, 31, A79–A84. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.659
Ochoa-Velasco, C. E., Palestina-Rivera, J., Ávila-Sosa, R., Navarro-Cruz, A. R., Vera-López, O., Lazcano-Hernández, M. A., & Hernández-Carranza, P. (2022). Use of green (Opuntia megacantha) and red (Opuntia ficus-indica L.) cactus pear peels for developing a supplement rich in antioxidants, fiber, and Lactobacillus rhamnosus. Food Science and Technology, 42. https://doi.org/10.1590/fst.101421
Parikh, A., & Takhar, P. S. (2016). Comparison of Microwave and Conventional Frying on Quality Attributes and Fat Content of Potatoes. Journal of Food Science, 81(11), E2743–E2755. https://doi.org/10.1111/1750-3841.13498
Rahimi, J., Adewale, P., Ngadi, M., Agyare, K., & Koehler, B. (2017). Changes in the textural and thermal properties of batter coated fried potato strips during post frying holding. Food and Bioproducts Processing, 102, 136–143. https://doi.org/https://doi.org/10.1016/j.fbp.2016.12.013
Ramadan, M. F., & Mörsel, J.-T. (2003). Recovered lipids from prickly pear [Opuntia ficus-indica (L.) Mill] peel: a good source of polyunsaturated fatty acids, natural antioxidant vitamins and sterols. Food Chemistry, 83(3), 447–456. https://doi.org/https://doi.org/10.1016/S0308-8146(03)00128-6
Sakonidou, E. P., Karapantsios, T. D., & Raphaelides, S. N. (2003). Mass transfer limitations during starch gelatinization. Carbohydrate Polymers, 53, 53–61. https://doi.org/10.1016/S0144-8617(03)00010-9
Salehi, F., Ghazvineh, S., & Amiri, M. (2024). Effect of basil seed gum coating and ultrasound pretreatment on frying time, oil uptake, hardness, color indexes, and sensory properties of potato slices. Ultrasonics Sonochemistry, 110, 107035. https://doi.org/https://doi.org/10.1016/j.ultsonch.2024.107035
Sandoval, A. J., Nuñez, M., Müller, A. J., Valle, G. Della, & Lourdin, D. (2009). Glass transition temperatures of a ready to eat breakfast cereal formulation and its main components determined by DSC and DMTA. Carbohydrate Polymers, 76(4), 528–534. https://doi.org/https://doi.org/10.1016/j.carbpol.2008.11.019
Teruel, M. del R., Gordon, M., Linares, M. B., Garrido, M. D., Ahromrit, A., & Niranjan, K. (2015). A Comparative Study of the Characteristics of French Fries Produced by Deep Fat Frying and Air Frying. Journal of Food Science, 80(2), E349–E358. https://doi.org/10.1111/1750-3841.12753
Tian, J., Chen, S., Shi, J., Chen, J., Liu, D., Cai, Y., Ogawa, Y., & Ye, X. (2017). Microstructure and digestibility of potato strips produced by conventional frying and air-frying: An in vitro study. Food Structure, 14, 30–35. https://doi.org/https://doi.org/10.1016/j.foostr.2017.06.001
Wang, Q.-L., Yang, Q., Kong, X.-P., & Chen, H.-Q. (2024). The addition of resistant starch and protein to the batter reduces oil uptake and improves the quality of the fried batter-coated nuts. Food Chemistry, 438, 137992. https://doi.org/https://doi.org/10.1016/j.foodchem.2023.137992
Yan, F., Li, N., & Hirota, K. (2021). QHSL: A quantum hue, saturation, and lightness color model. Information Sciences, 577, 196–213. https://doi.org/10.1016/j.ins.2021.06.077
Publicado
2025-01-09
Cómo citar
Guerra, R., Leon, A., Manzaneda, E., Apaza, E., Sucasaca, A., & Medina, W. (2025). Propiedades físicas de papas fritas elaboradas con harinas de quinua y cáscara de tuna. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 42(1), e254207. Recuperado a partir de https://produccioncientificaluz.org/index.php/agronomia/article/view/43239
Sección
Tecnología de Alimentos