Efeito interativo da restrição de umidade e ácido salicílico nas respostas bioquímicas em Phaseolus coccineus

Palavras-chave: carotenóides, seca, glicinabetaína, osmolitos, pigmentos fotossintéticos

Resumo

O aumento da escassez de água leva-nos a considerar a compreensão das culturas básicas sob estas condições, juntamente com isto, as respostas positivas do ácido salicílico em diferentes culturas, pode ser uma opção para levar à frutificação o cultivo de feijão corredor (Phaseolus coccineus). Este estudo avaliou o efeito do ácido salicílico (ÁS) sobre a resposta bioquímica do P. coccineus, com restrição de umidade nos períodos de janeiro a julho de 2019 e 2020, na Universidade Autônoma Benemerita de Puebla, México. A pesquisa consistiu em três níveis de seca: 30, 60 e 100% de umidade do solo; cinco níveis de SA: 0, 0.5, 1.0, 1.5 e 2.0 mM; e dois níveis de adubação: não fertilizante e fertilizante [(00-60-30) na semeadura + (30N) nitrogênio foliar na fase de enchimento de grãos] para os dois períodos de crescimento. O delineamento experimental foi em blocos ao acaso fatorial com cinco repetições. Os resultados mostraram que a aplicação foliar com 1.5 mM de ÁS manteve o maior teor relativo de água nas folhas (89.05%), assim como clorofila a, b e carotenóides (2.20, 1.11 e 0.90 µg.mL-1, respectivamente); de glicinabetaína (24.80 µmol.g-1 de peso seco) e açúcares solúveis totais (31.15 mg eq.glicose g-1 de peso seco), excluindo prolina. O SA não aumentou as frações protéicas, mesmo em plantas com fertilizante; mas os efeitos positivos do SA foram maiores em plantas sem estresse hídrico e com adubação.

Downloads

Não há dados estatísticos.

Referências

Abdelaal, K.A.A., Attia, K.A., Alamery, S.F., El-Afry, M.M., Ghazy, A.I., Tantawy, D.S., & Hafez, Y.M. (2020). Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability, 12:1-15. http://dx.doi.org/10.3390/su12051736
Afshari, F., Nakhaei, F., Mosavi, S., & Seghatoleslami, M. (2022). Physiological and biochemical responses of Stevia rebaudiana Bertoni to nutri-priming and foliar nutrition under water supply restrictions. Industrial Crops and Products, 176: 114399. https://doi.org/10.1016/j.indcrop.2021.114399
Barba de la Rosa, A.P., Gueguen, J., Paredes-López, O., & Viroben, G. (1992). Fractionation procedures, electrophoretic characterization, and amino acid composition of amaranth seed proteins. Journal of Agricultural and Food Chemistry, 40:931-936. https://doi.org/10.1021/jf00018a002
Bates, L.S., Waldren, R.P., Teare, I.D., Bates, L.S., Waldern, R.P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39:205-207. https://doi.org/10.1007/BF00018060
Chaimala, A., Jogloy, S., Vorasoot, N., Holbrook, C.C., Kvien, C.K., & Laohasiriwong, S. (2021). The variation of relative water content, SPAD chlorophyll meter reading, stomatal conductance, leaf area, and specific leaf area of Jerusalem artichoke genotypes under different durations of terminal drought in tropical region. Journal of Agronomy and Crop Science, 00:1-15. https://doi.org/10.1111/jac.12561
Dianat, M., Saharkhiz, M.J., & Tavassolian, I. (2016). Salicylic acid mitigates drought stress in Lippia citriodora L.: Effects on biochemical traits and essential oil yield. Biocatalysis and Agricultural Biotechnology, 8:286-293. https://doi.org/10.1016/j.bcab.2016.10.010
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28:350-356. https://doi.org/10.1021/ac60111a017
Elhakem, A.H. (2019). Impact of salicylic acid application on growth, photosynthetic pigments and organic osmolytes response in Mentha arvensis under drought stress. Journal of Biological Sciences, 19:372-380. https://doi.org/10.3923/jbs.2019.372.380
FAO. (2015). Base referencial mundial del recurso suelo. Organización de la Naciones Unidas para la Alimentación y la Agricultura (FAO). Rome, Italy. https://www.fao.org/soils-portal/soil-survey/clasificacion-de-suelos/base-referencial-mundial/es/
Farouk, S., Arafa, S.A., & Nassar, R.M.A. (2018). Improving drought tolerance in corn (Zea mays L.) by foliar application with salicylic acid. International Journal of Environment, 7:104-123. http://www.curresweb.com/ije/ije/2018/104-123.pdf
Gadi, B.R., and Laxmi, V. (2012). Effect of salicylic acid and moisture stress on sugar content and sucrose synthase activity in Ziziphus seedlings. Biochemical and Cellular Archives, 12:21-23. http://www.connectjournals.com/achivestoc2.php?fulltext=1378201H_2.pdf&&bookmark=CJ-033216&&issue_id=01&&yaer=2012
Galon, L., Pawelkiewicz, R., Müller, C., da Silva, M.D., Orestes, S.C., Barretta, F.M., de Oliveira R.E.R., Agazzi, L.R., Aspiazú, I., & Forte, C.T. (2022). Morphophysiological changes in clearfield oilseed rape as a result of the application of ALS-herbicides and weed competition. Journal of Plant Diseases and Protection, 129:993-1003. https://doi.org/10.1007/s41348-022-00607-6
Ghanbari, A.A., Mousavi, S.H., Gorji, A.M., & Rao, I. (2013). Effects of water stress on leaves and seeds of bean (Phaseolus vulgaris L.). Turkish Journal of Field Crops, 18:73-77. http://www.field-crops.org/assets/pdf/product5211c60894006.pdf
Gholinezhad, E. (2020). Impact of drought stress and stress modifiers on water use efficiency, membrane lipidation indices, and water relationship indices of pot marigold (Calendula officinalis L.). Brazilian Journal of Botany, 43:747-759. https://doi.org/10.1007/s40415-020-00651-2
Gordillo-Curiel, A., Rodríguez-Larramendi, L.A., Salas-Marina, M.Á., & Rosales-Esquinca, M.Á. (2021). Effect of salicylic acid on the germination and initial growth of coffee (Coffea arabica L. var. Costa Rica 95). Revista de la Facultad de Agronomía de la Universidad del Zulia, 38(1):43-59. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n1.03
Goswami, B., Rankawat, R., & Gadi, B.R. (2020). Physiological and antioxidative responses associated with drought tolerance of Lasiurus sindicus Henr. endemic to Thar desert, India. Brazilian Journal of Botany, 43:761-773. https://doi.org/10.1007/s40415-020-00666-9
Grieve, C.M., and Grattan, S.R. (1983). Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant and Soil, 70:303-307. https://doi.org/10.1007/BF02374789
Hossain, A., Pamanick, B., Venugopalan, V.K., Ibrahimova, U., Rahman, M.A., Siyal, A.L., Maitra, S., Chatterjee, S., & Aftab, T. (2022). Emerging roles of plant growth regulators for plants adaptation to abiotic stress-induced oxidative stress. In: Aftab, T., Naeem, M. (Eds). Emerging Plant Growth Regulators in Agriculture. Academic Press, UK. pp: 1-72. https://doi.org/10.1016/B978-0-323-91005-7.00010-2
Idrees, M., Khan, M.M.A., Aftab, T., Naeem, M., & Hashmi, N. (2010). Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress. Journal of Plant Interactions, 5:293-303. https://doi.org/10.1080/17429145.2010.508566
Jacinto-Hernández, C., Coria-Peña, M., Contreras-Santos, G., Martínez-López, L., Zapata-Martelo, E., y Ayala-Carrillo, M.R. (2019). Azúcares totales y proteína en frijol nativo de la región Triqui Alta, Oaxaca. Revista Mexicana de Ciencias Agrícolas, 10:1667-1674. https://doi.org/10.29312/remexca.v10i7.2114
Kordi, S., Saidi, M., & Ghanbari, F. (2013). Induction of drought tolerance in sweet basil (Ocimum basilicum L) by salicylic acid. International Journal of Agricultural and Food Research, 2:18-26. https://doi.org/10.24102/ijafr.v2i2.149
Latimer, G.W. (2012). Official methods of analysis of AOAC international. 19th ed. Gaithersburg, Maryland, USA.
Lichtenthaler, H.K., and Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-Vis spectroscopy. In: Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P. (eds). Current protocols in food analytical chemistry. John Wiley and Sons, New York, USA. Unit F4.3. https://doi.org/10.1002/0471142913.faf0403s01
Men, Y., Wang, D., Li, B., Su, Y., & Chen, G. (2018). Effects of drought stress on the antioxidant system, osmolytes and secondary metabolites of Saposhnikovia divaricata seedlings. Acta Physiologiae Plantarum, 40:191. https://doi.org/10.1007/s11738-018-2762-0
Morosan, M., Al Hassan, M., Naranjo, M.A., López-Gresa, M.P., Boscaiu, M., & Vicente, O. (2017). Comparative analysis of drought responses in Phaseolus vulgaris (common bean) and P. coccineus (runner bean) cultivars. The EuroBiotech Journal, 1:247-252. https://doi.org/10.24190/ISSN2564-615X/2017/03.09
Morr, C., German, B., Kinsella, J., Regenstein, J., Buren, J.V., Kilara, A., Lewis, B., & Mangino, M. (1985). A collaborative study to develop a standardized food protein solubility procedure. Journal of Food Science, 50:1715-1718. https://doi.org/10.1111/j.1365-2621.1985.tb10572.x
Muhie, S.H. (2022). Optimization of photosynthesis for sustainable crop production. CABI Agriculture and Bioscience, 3, 50. https://doi.org/10.1186/s43170-022-00117-3
Ozturk, M., Unal, B.T., García-Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M. (2020). Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 1-15. https://doi.org/10.1111/ppl.13297
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Rao, S.R., Qayyum, A., Razzaq, A., Ahmad, M., Mahmood, I., & Sher, A. (2012). Role of foliar application of salicylic acid and L-tryptophan in drought tolerance of maize. The Journal of Animal & Plant Sciences, 22:768-772. http://thejaps.org.pk/docs/v-22-3/42.pdf
Rehman, A., Safeer, M., Qamar, R., Mohsin-Altaf, M., Sarwar, N., Farooq, O., Mazher-Iqbal, M., and Ahmad, S. (2019). Exogenous application of salicylic acid ameliorates growth and yield of sunflower (Helianthus annuus L.) in saline soil. Agrociencia, 53:207-217. http://www.colpos.mx/agrocien/Bimestral/2019/feb-mar/art-6.pdf
Reyes-Matamoros, J., Martínez-Moreno, D., Rueda-Luna, R., & Rodríguez-Ramírez, T. (2014). Efecto del estrés hídrico en plantas de frijol (Phaseolus vulgaris L.) en condiciones de invernadero. Revista Iberoamericana de Ciencias, 1:191-203. http://www.reibci.org/publicados/2014/julio/2200132.pdf
Surabhi, G.K., and Rout, A. (2020). Glycine betaine and crop abiotic stress tolerance: an update. In: Roychoudhury, A., Tripathi, D.K. (Eds). Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. John Wiley & Sons, NJ, USA. pp: 24-52. https://doi.org/10.1002/9781119552154.ch2
Teniente-Martínez, G., González-Cruz, L., Cariño-Cortes, R., & Bernardino-Nicanor, A. (2016). Caracterización de las proteínas del frijol ayocote (Phaseolus coccineus L.). Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 1:1-6. http://www.fcb.uanl.mx/IDCyTA/files/volume1/1/1/1.pdf
Yan, X., Liu, J., Wu, K.X., Yang, N., Pan, L.B., Ying, C., Liu, Y. & Zhong-Hua, T. (2022). Comparative analysis of endogenous hormones and metabolite profiles in early-spring flowering plants and unflowered plants revealing the strategy of blossom. Journal of Plant Growth Regulation, 41:2421-2434. https://doi.org/10.1007/s00344-021-10452-w
Publicado
2022-08-22
Como Citar
Aguilar-Luna, J. M., Loeza-Corte, J. M., & Díaz-López, E. (2022). Efeito interativo da restrição de umidade e ácido salicílico nas respostas bioquímicas em Phaseolus coccineus. Revista Da Faculdade De Agronomia Da Universidade De Zulia, 39(3), e223940. Obtido de https://produccioncientificaluz.org/index.php/agronomia/article/view/38615
Secção
Produção Vegetal