Efecto interactivo de la restricción de humedad y ácido salicílico sobre las respuestas bioquímicas de Phaseolus coccineus

Palabras clave: carotenoides, sequía, glicinabetaína, osmolitos, pigmentos fotosintéticos

Resumen

El incremento en la escasez de agua lleva a considerar el entendimiento de los cultivos básicos bajo estas condiciones, aunado a esto, las respuestas positivas del ácido salicílico en diferentes cultivos, puede ser una opción para llevar a buen término el cultivo de frijol ayocote (Phaseolus coccineus). En este estudio se evaluó el efecto del ácido salicílico (ÁS) en la respuesta bioquímica de P. coccineus, con restricción de humedad en los periodos de enero a julio de 2019 y 2020 en la Benemérita Universidad Autónoma de Puebla, México. La investigación constó de tres niveles de sequía: 30, 60 y 100% de humedad del suelo; cinco niveles de ÁS: 0, 0.5, 1.0, 1.5 y 2.0 mM; y dos niveles de fertilización: sin fertilizante y con fertilizante [(00-60-30) al momento de la siembra + (30N) nitrógeno foliar en la etapa de llenado de grano] para los dos períodos de cultivo. El diseño experimental fue factorial en bloques con cinco repeticiones. Los resultados mostraron que la aplicación foliar con 1.5 mM de ÁS mantuvo el mayor contenido relativo de agua en hojas (89.05%), así como clorofila a, b y carotenoides (2.20, 1.11 y 0.90 µg.mL-1, respectivamente); de glicinabetaína (24.80 µmol.g-1 en peso seco) y azúcares solubles totales (31.15 mg eq.glucosa g-1 en peso seco), excluyendo prolina. El ÁS no incrementó las fracciones protéicas, incluso en plantas con fertilización; pero los efectos positivos del ÁS fueron mayores en plantas sin estrés hídrico y con fertilización.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdelaal, K.A.A., Attia, K.A., Alamery, S.F., El-Afry, M.M., Ghazy, A.I., Tantawy, D.S., & Hafez, Y.M. (2020). Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability, 12:1-15. http://dx.doi.org/10.3390/su12051736
Afshari, F., Nakhaei, F., Mosavi, S., & Seghatoleslami, M. (2022). Physiological and biochemical responses of Stevia rebaudiana Bertoni to nutri-priming and foliar nutrition under water supply restrictions. Industrial Crops and Products, 176: 114399. https://doi.org/10.1016/j.indcrop.2021.114399
Barba de la Rosa, A.P., Gueguen, J., Paredes-López, O., & Viroben, G. (1992). Fractionation procedures, electrophoretic characterization, and amino acid composition of amaranth seed proteins. Journal of Agricultural and Food Chemistry, 40:931-936. https://doi.org/10.1021/jf00018a002
Bates, L.S., Waldren, R.P., Teare, I.D., Bates, L.S., Waldern, R.P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39:205-207. https://doi.org/10.1007/BF00018060
Chaimala, A., Jogloy, S., Vorasoot, N., Holbrook, C.C., Kvien, C.K., & Laohasiriwong, S. (2021). The variation of relative water content, SPAD chlorophyll meter reading, stomatal conductance, leaf area, and specific leaf area of Jerusalem artichoke genotypes under different durations of terminal drought in tropical region. Journal of Agronomy and Crop Science, 00:1-15. https://doi.org/10.1111/jac.12561
Dianat, M., Saharkhiz, M.J., & Tavassolian, I. (2016). Salicylic acid mitigates drought stress in Lippia citriodora L.: Effects on biochemical traits and essential oil yield. Biocatalysis and Agricultural Biotechnology, 8:286-293. https://doi.org/10.1016/j.bcab.2016.10.010
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28:350-356. https://doi.org/10.1021/ac60111a017
Elhakem, A.H. (2019). Impact of salicylic acid application on growth, photosynthetic pigments and organic osmolytes response in Mentha arvensis under drought stress. Journal of Biological Sciences, 19:372-380. https://doi.org/10.3923/jbs.2019.372.380
FAO. (2015). Base referencial mundial del recurso suelo. Organización de la Naciones Unidas para la Alimentación y la Agricultura (FAO). Rome, Italy. https://www.fao.org/soils-portal/soil-survey/clasificacion-de-suelos/base-referencial-mundial/es/
Farouk, S., Arafa, S.A., & Nassar, R.M.A. (2018). Improving drought tolerance in corn (Zea mays L.) by foliar application with salicylic acid. International Journal of Environment, 7:104-123. http://www.curresweb.com/ije/ije/2018/104-123.pdf
Gadi, B.R., and Laxmi, V. (2012). Effect of salicylic acid and moisture stress on sugar content and sucrose synthase activity in Ziziphus seedlings. Biochemical and Cellular Archives, 12:21-23. http://www.connectjournals.com/achivestoc2.php?fulltext=1378201H_2.pdf&&bookmark=CJ-033216&&issue_id=01&&yaer=2012
Galon, L., Pawelkiewicz, R., Müller, C., da Silva, M.D., Orestes, S.C., Barretta, F.M., de Oliveira R.E.R., Agazzi, L.R., Aspiazú, I., & Forte, C.T. (2022). Morphophysiological changes in clearfield oilseed rape as a result of the application of ALS-herbicides and weed competition. Journal of Plant Diseases and Protection, 129:993-1003. https://doi.org/10.1007/s41348-022-00607-6
Ghanbari, A.A., Mousavi, S.H., Gorji, A.M., & Rao, I. (2013). Effects of water stress on leaves and seeds of bean (Phaseolus vulgaris L.). Turkish Journal of Field Crops, 18:73-77. http://www.field-crops.org/assets/pdf/product5211c60894006.pdf
Gholinezhad, E. (2020). Impact of drought stress and stress modifiers on water use efficiency, membrane lipidation indices, and water relationship indices of pot marigold (Calendula officinalis L.). Brazilian Journal of Botany, 43:747-759. https://doi.org/10.1007/s40415-020-00651-2
Gordillo-Curiel, A., Rodríguez-Larramendi, L.A., Salas-Marina, M.Á., & Rosales-Esquinca, M.Á. (2021). Effect of salicylic acid on the germination and initial growth of coffee (Coffea arabica L. var. Costa Rica 95). Revista de la Facultad de Agronomía de la Universidad del Zulia, 38(1):43-59. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n1.03
Goswami, B., Rankawat, R., & Gadi, B.R. (2020). Physiological and antioxidative responses associated with drought tolerance of Lasiurus sindicus Henr. endemic to Thar desert, India. Brazilian Journal of Botany, 43:761-773. https://doi.org/10.1007/s40415-020-00666-9
Grieve, C.M., and Grattan, S.R. (1983). Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant and Soil, 70:303-307. https://doi.org/10.1007/BF02374789
Hossain, A., Pamanick, B., Venugopalan, V.K., Ibrahimova, U., Rahman, M.A., Siyal, A.L., Maitra, S., Chatterjee, S., & Aftab, T. (2022). Emerging roles of plant growth regulators for plants adaptation to abiotic stress-induced oxidative stress. In: Aftab, T., Naeem, M. (Eds). Emerging Plant Growth Regulators in Agriculture. Academic Press, UK. pp: 1-72. https://doi.org/10.1016/B978-0-323-91005-7.00010-2
Idrees, M., Khan, M.M.A., Aftab, T., Naeem, M., & Hashmi, N. (2010). Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress. Journal of Plant Interactions, 5:293-303. https://doi.org/10.1080/17429145.2010.508566
Jacinto-Hernández, C., Coria-Peña, M., Contreras-Santos, G., Martínez-López, L., Zapata-Martelo, E., y Ayala-Carrillo, M.R. (2019). Azúcares totales y proteína en frijol nativo de la región Triqui Alta, Oaxaca. Revista Mexicana de Ciencias Agrícolas, 10:1667-1674. https://doi.org/10.29312/remexca.v10i7.2114
Kordi, S., Saidi, M., & Ghanbari, F. (2013). Induction of drought tolerance in sweet basil (Ocimum basilicum L) by salicylic acid. International Journal of Agricultural and Food Research, 2:18-26. https://doi.org/10.24102/ijafr.v2i2.149
Latimer, G.W. (2012). Official methods of analysis of AOAC international. 19th ed. Gaithersburg, Maryland, USA.
Lichtenthaler, H.K., and Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-Vis spectroscopy. In: Wrolstad, R.E., Acree, T.E., An, H., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Sporns, P. (eds). Current protocols in food analytical chemistry. John Wiley and Sons, New York, USA. Unit F4.3. https://doi.org/10.1002/0471142913.faf0403s01
Men, Y., Wang, D., Li, B., Su, Y., & Chen, G. (2018). Effects of drought stress on the antioxidant system, osmolytes and secondary metabolites of Saposhnikovia divaricata seedlings. Acta Physiologiae Plantarum, 40:191. https://doi.org/10.1007/s11738-018-2762-0
Morosan, M., Al Hassan, M., Naranjo, M.A., López-Gresa, M.P., Boscaiu, M., & Vicente, O. (2017). Comparative analysis of drought responses in Phaseolus vulgaris (common bean) and P. coccineus (runner bean) cultivars. The EuroBiotech Journal, 1:247-252. https://doi.org/10.24190/ISSN2564-615X/2017/03.09
Morr, C., German, B., Kinsella, J., Regenstein, J., Buren, J.V., Kilara, A., Lewis, B., & Mangino, M. (1985). A collaborative study to develop a standardized food protein solubility procedure. Journal of Food Science, 50:1715-1718. https://doi.org/10.1111/j.1365-2621.1985.tb10572.x
Muhie, S.H. (2022). Optimization of photosynthesis for sustainable crop production. CABI Agriculture and Bioscience, 3, 50. https://doi.org/10.1186/s43170-022-00117-3
Ozturk, M., Unal, B.T., García-Caparrós, P., Khursheed, A., Gul, A., & Hasanuzzaman, M. (2020). Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 1-15. https://doi.org/10.1111/ppl.13297
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Rao, S.R., Qayyum, A., Razzaq, A., Ahmad, M., Mahmood, I., & Sher, A. (2012). Role of foliar application of salicylic acid and L-tryptophan in drought tolerance of maize. The Journal of Animal & Plant Sciences, 22:768-772. http://thejaps.org.pk/docs/v-22-3/42.pdf
Rehman, A., Safeer, M., Qamar, R., Mohsin-Altaf, M., Sarwar, N., Farooq, O., Mazher-Iqbal, M., and Ahmad, S. (2019). Exogenous application of salicylic acid ameliorates growth and yield of sunflower (Helianthus annuus L.) in saline soil. Agrociencia, 53:207-217. http://www.colpos.mx/agrocien/Bimestral/2019/feb-mar/art-6.pdf
Reyes-Matamoros, J., Martínez-Moreno, D., Rueda-Luna, R., & Rodríguez-Ramírez, T. (2014). Efecto del estrés hídrico en plantas de frijol (Phaseolus vulgaris L.) en condiciones de invernadero. Revista Iberoamericana de Ciencias, 1:191-203. http://www.reibci.org/publicados/2014/julio/2200132.pdf
Surabhi, G.K., and Rout, A. (2020). Glycine betaine and crop abiotic stress tolerance: an update. In: Roychoudhury, A., Tripathi, D.K. (Eds). Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. John Wiley & Sons, NJ, USA. pp: 24-52. https://doi.org/10.1002/9781119552154.ch2
Teniente-Martínez, G., González-Cruz, L., Cariño-Cortes, R., & Bernardino-Nicanor, A. (2016). Caracterización de las proteínas del frijol ayocote (Phaseolus coccineus L.). Investigación y Desarrollo en Ciencia y Tecnología de Alimentos, 1:1-6. http://www.fcb.uanl.mx/IDCyTA/files/volume1/1/1/1.pdf
Yan, X., Liu, J., Wu, K.X., Yang, N., Pan, L.B., Ying, C., Liu, Y. & Zhong-Hua, T. (2022). Comparative analysis of endogenous hormones and metabolite profiles in early-spring flowering plants and unflowered plants revealing the strategy of blossom. Journal of Plant Growth Regulation, 41:2421-2434. https://doi.org/10.1007/s00344-021-10452-w
Publicado
2022-08-22
Cómo citar
Aguilar-Luna, J. M., Loeza-Corte, J. M., & Díaz-López, E. (2022). Efecto interactivo de la restricción de humedad y ácido salicílico sobre las respuestas bioquímicas de Phaseolus coccineus. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(3), e223940. Recuperado a partir de https://produccioncientificaluz.org/index.php/agronomia/article/view/38615
Sección
Producción Vegetal