Control biológico del moho gris de la vid: evaluación in vitro e in vivo de la actividad antagónica de cepas indígenas de Trichoderma harzianum (Mascara, Argelia)

  • Imen Benbahi Laboratory of Research on Biological Systems and Geomatics (L.R.S.B.G), Department of Agronomy, Faculty of Life and Natural Sciences, University Mustapha Stambouli of Mascara, 29000, Algeria https://orcid.org/0009-0001-8920-5402
  • Aoumria Merzoug Laboratory of Research on Biological Systems and Geomatics (L.R.S.B.G), Department of Agronomy, Faculty of Life and Natural Sciences, University Mustapha Stambouli of Mascara, 29000, Algeria. https://orcid.org/0000-0002-7718-6902
  • Mohamed El Amine Kouadri Laboratory of Research on Biological Systems and Geomatics (L.R.S.B.G), Department of Agronomy, Faculty of Life and Natural Sciences, University Mustapha Stambouli of Mascara, 29000, Algeria. https://orcid.org/0000-0002-9969-3497
  • Amel Bennacer Laboratory of Valorization and Conservation of Biological Ressources (VALCOR), Department of Biology, Faculty of Sciences, University M'hamed Bougara, Boumerdes, Algeria. https://orcid.org/0000-0003-2200-6991
Palabras clave: Botrytis cinerea, Vitis vinifera, antagonismo, promoción de crecimiento

Resumen

El moho gris, causado por el hongo necrotrófico Botrytis cinerea, ha sido responsable de perdidas económicas significativas en la producción de vid (Vitis vinifera L.) en todo el mundo, incluyendo Argelia, lo que resalta la necesidad de alternativas de control sostenibles. El objetivo de este estudio fue evaluar el potencial antagónico de una cepa autóctona de Trichoderma harzianum contra aislados locales de B. cinerea de Mascara, Argelia. Un aislado altamente virulento de B. cinerea (BC3) se recolectó de hojas de vid infectadas y se identificó mediante análisis morfológicos y moleculares, mientras que el aislado antagonista de T. harzianum (T5) se obtuvo de la rizosfera de vides sanas. Los ensayos de cultivo dual in vitro mostraron que T. harzianum inhibió significativamente el crecimiento micelial de B. cinerea, con una inhibición directa del 80,50 % y una inhibición indirecta del 72,87 %. Experimentos in vivo confirmaron aún más su eficacia, reduciendo la incidencia de la enfermedad en un 56,25 % y acelerando el crecimiento de las plantas, aumentando su altura de 60 a 96 cm, con una notable mejora en la biomasa vegetativa. Estos resultados sugieren que la cepa nativa T. harzianum T5 es un agente de biocontrol prometedor y eficaz para el manejo sostenible de la podredumbre gris en viñedos.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ayilara, M. S., Adeleke, B. S., Akinola, S. A., Fayose, C. A., Adeyemi, U. T., Gbadegesin, L. A., Omole, R. K., Johnson R. M., Uthman Q. O & Babalola, O. O. (2023). Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Frontiers in Microbiology, 14, 1040901. https://doi.org/10.3389/fmicb.2023.1040901
Bekkar, A. A., Belabid, L., & Zaim, S. (2016). Biocontrol of phytopathogenic Fusarium spp. by antagonistic Trichoderma. Biopesticides International, 12(1), 37-45. https://connectjournals.com/pages/articledetails/toc025433
Bendahmane, B. S., Mahiout, D., Benzohra, I. E., & Benkada, M. Y. (2012). Antagonism of three Trichoderma species against Botrytis fabae and B. cinerea, the causal agents of chocolate spot of faba bean (Vicia faba L.) in Algeria. World Applied Sciences Journal, 17(3), 278-283. http://idosi.org/wasj/wasj17(3)12/2.pdf
Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553-556. https://doi.org/10.1080/00275514.1999.12061051
Dos Santos Castro, L., Antoniêto, A. C. C., Pedersoli, W. R., Silva-Rocha, R., Persinoti, G. F., & Silva, R. N. (2014). Expression pattern of cellulolytic and xylanolytic genes regulated by transcriptional factors XYR1 and CRE1 are affected by carbon source in Trichoderma reesei. Gene Expression Patterns, 14(2), 88-95. https://doi.org/10.1016/j.gep.2014.01.003
Druzhinina, I. S., Kopchinskiy, A. G., Komoń, M., Bissett, J., Szakacs, G., & Kubicek, C. P. (2010). An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genetics and Biology, 47(4), 385-392. https://doi.org/10.1016/j.fgb.2005.06.007
Gorman, Z., Chen, J., de Leon, A. A. P., & Wallis, C. M. (2023). Comparison of assembly platforms for the assembly of the nuclear genome of Trichoderma harzianum strain PAR3. BMC genomics, 24(1), 454. https://doi.org/10.1186/s12864-023-09544-6
Harman, G. E., Howell C. R., Viterbo A., Chet I. & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56. https://doi.org/10.1038/nrmicro797
Harman, G. E., Doni, F., Khadka, R. B., & Uphoff, N. (2021). Endophytic strains of Trichoderma increase plants’ photosynthetic capability. Journal of Applied Microbiology, 130(2), 529-546. https://doi.org/10.1111/jam.14368
International Organisation of Vine and Wine (OIV). (2022). State of the world vine and wine sector in 2023. OIV. https://www.oiv.int/sites/default/files/documents/OIV_Annual_Assessment-2023.pdf
Khan, R. A. A., Najeeb, S., Hussain, S., Xie, B., & Li, Y. (2020). Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms, 8(6), 817. https://doi.org/10.3390/microorganisms8060817
Kouadri, M. E. A., Bekkar, A. A., & Zaim, S. (2023a). First report of using Trichoderma -longibrachiatum as a biocontrol agent against Macrophomina pseudophaseolina causing charcoal rot disease of lentil in Algeria. Egyptian Journal of Biological Pest Control, 33(1), 38. https://doi.org/10.1186/s41938-023-00683-2
Kouadri, M. E. A., Bekkar, A. A., & Zaim, S. (2023b). Morphological, molecular and pathogenic characterization of Macrophomina pseudophaseolina, the causal agent of charcoal rot disease on lentil (Lens culinaris) in Algeria. Physiological and Molecular Plant Pathology, 128, 102143. https://doi.org/10.1016/j.pmpp.2023.102143
Kthiri, Z., Jabeur, M. B., Machraoui, M., Gargouri, S., Hiba, K., & Hamada, W. (2020). Coating seeds with Trichoderma strains promotes plant growth and enhances systemic resistance against Fusarium crown rot in durum wheat. Egyptian Journal of Biological Pest Control, 30, 139. https://doi.org/10.1186/s41938-020-00338-6
Kuzmanovska, B., Rusevski, R., Jankulovska, M., & Oreshkovikj, K. B. (2018). Antagonistic activity of Trichoderma asperellum and Trichoderma harzianum against genetically diverse Botrytis cinerea isolates. Chilean Journal of Agricultural Research, 78(3), 391-399. http://dx.doi.org/10.4067/S0718-58392018000300391
Leslie, J.  F., & Summerell, B.  A. (2006). The Fusarium Laboratory Manual. Blackwell Publishing / Wiley Blackwell. ISBN 978 0 8138 1919 8. https://doi.org/10.1002/9780470278376

Lian, J., Han, H., Zhao, J., & Li, C. (2018). In-vitro and in-planta Botrytis cinerea inoculation assays for tomato. Bio-protocol, 8(8), e2810. https://doi.org/10.21769/BioProtoc.2810
Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: From 'omics to the field. Annual Review of Phytopathology, 48(1), 395-417. https://doi.org/10.1146/annurev-phyto-073009-114314
Maruyama, C. R., Bilesky-José, N., de Lima, R., & Fraceto, L. F. (2020). Encapsulation of Trichoderma harzianum preserves enzymatic activity and enhances the potential for biological control. Frontiers in Bioengineering and Biotechnology, 8, 225. https://doi.org/10.3389/fbioe.2020.00225
Mokhtar, H., & Dehimat, A. (2012). Antagonism capability in vitro of Trichoderma harzianum against some pathogenic fungi. Agriculture Biology Journal of North America, 3(11), 452-460. https://doi.org/10.5251/abjna.2012.3.11.452.460
Okoth, S. A., Roimen, H., Mutsotso, B., Muya, E., Kahindi, J., Owino, J. O., & Okoth, P. (2007). Land use systems and distribution of Trichoderma species in Embu region, Kenya. Tropical and Subtropical Agroecosystems, 7(2), 105-122. https://www.redalyc.org/pdf/939/93970205.pdf
Rhouma, A., Hajji-Hedfi, L., Kouadri, M. E., Atallaoui, K., Matrood, A. A., & Khrieba, M. I. (2023). Botrytis cinerea: The cause of tomatoes gray mold. Egyptian Journal of Phytopathology, 51(2), 68-75. https://doi.org/10.21608/ejp.2023.224842.1101
Saddek, D., Messgo-Moumene, S., Chemat-Djenni, Z., Bendifallah, L., & Bencheikh, K. (2023). Antagonism of isolates of Trichoderma spp. against Botrytis cinerea Pers., agent of gray rot of tomato (Lycopersicum esculentum Mill.) under greenhouse conditions. Journal of Fundamental and Applied Sciences, 12(2), 583-606. https://doi.org/10.4314/jfas.v12i2.5
Shao, W., Zhao, Y., & Ma, Z. (2021). Advances in understanding fungicide resistance in Botrytis cinerea in China. Phytopathology, 111(3), 455-463. https://doi.org/10.1094/PHYTO-07-20-0313-IA
Wang, R., Liu, C., Jiang, X., Tan, Z., Li, H., Xu, S., Zhang, S., Shang, Q., Deising, H. B., Behrens, S. E, & Wu, B. (2022). The newly identified Trichoderma harzianum partitivirus (ThPV2) does not diminish spore production and biocontrol activity of its host. Viruses, 14(7), 1532. https://doi.org/10.3390/v14071532
White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols, 18(1), 315-322. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Yan-gang, P., Qin-ju, T., Xiao-juan, Z., Ying, L., Xiao-fang, S., Zhi-fei, L., Xiao-bo, Q., Jing, X., Min, Z., Hua-bao, C., Xiao-li, C., Hui-min, T., Li-yun, S., & Guo-shu, G. (2019). Phenotypic and genetic characterization of Botrytis cinerea population from kiwifruit in Sichuan Province, China. Plant Disease, 103(4), 748-758. https://doi.org/10.1094/PDIS-04-18-0707-RE
Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., & Chen, J. (2023). Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in Microbiology, 14, 1160551. https://doi.org/10.3389/fmicb.2023.1160551
Publicado
2025-12-11
Cómo citar
Benbahi, I., Merzoug, A., El Amine Kouadri, M., & Bennacer, A. (2025). Control biológico del moho gris de la vid: evaluación in vitro e in vivo de la actividad antagónica de cepas indígenas de Trichoderma harzianum (Mascara, Argelia). Revista De La Facultad De Agronomía De La Universidad Del Zulia, 42(4), e254258. Recuperado a partir de https://produccioncientificaluz.org/index.php/agronomia/article/view/44900
Sección
Producción Vegetal