Efecto de los niveles de salinidad sobre la actividad antifúngica del aceite esencial de Thymus contra Fusarium oxysporum

Palabras clave: Actividad antimicrobiana, biocontrol, extractos de plantas, planta medicinal, cloruro de sodio

Resumen

El tomillo (Thymus sp.), una planta de la familia Lamiaceae, se utiliza en la medicina tradicional, contiene una amplia gama de componentes medicinalmente activos, en su gran mayoría de una mezcla bastante compleja de timol, ρ-cimeno, γ-terpineno y β-Cariofileno, entre otros. El objetivo del presente estudio fue evaluar la eficacia del extracto de Thymus vulgaris contra Fusarium oxysporum f. sp. radicis-lycopersici bajo condiciones salinas, simulando suelos con altos contenidos de sales de las regiones áridas. El aceite esencial se extrajo mediante hidrodestilación utilizando el aparato Clevenger. Los compuestos del aceite esencial se identificaron mediante el análisis GC-MS. La actividad antifúngica del aceite se evaluó mediante el método de dilución en agar. Los principales componentes del aceite esencial del tomillo fueron timol (76.96 %), ρ-cimeno (9.89 %) y γ-terpineno (1.92 %). El aceite presentó alta actividad in vitro, en el control de la germinación de los conidios y del crecimiento micelial. Sin embargo, el aceite no inhibió la esporulación en el medio salino. El crecimiento micelial fue estimulado al 0.6, 1 y 1.5 %, pero se redujo significativamente a la concentración más alta (2 %). La aplicación de NaCl provocó un aumento significativo en la producción de conidios en todas las concentraciones. La germinación conidial fue inhibida ligeramente por el NaCl solo al 2 %. Los resultados indican que la salinidad disminuye el potencial antifúngico del aceite esencial de Thymus contra el patógeno.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ahmad, A., Khan, A., Kumar, P., Bhatt, R. P., & Manzoor, N. (2011). Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast, 28(8), 611-617. https://doi.org/10.1002/yea.1890
Aksit, H., Bayar, Y., Simsek, S., & Ulutas, Y. (2022). Chemical composition and antifungal activities of the essential oils of Thymus species (Thymus pectinatus, Thymus convolutus, Thymus vulgaris) against plant pathogens. Journal of Essential Oil Bearing Plants, 25(1), 200-207. DOI: 10.1080/0972060X.2022.2043189
Al-Asmari, A. K., Athar, M. T., Al-Faraidy, A. A., & Almuhaiza, M. S. (2017). Chemical composition of essential oil of Thymus vulgaris collected from Saudi Arabian market. Asian Pacific Journal of Tropical Biomedicine, 7,147-50. https://doi.org/10.1016/j.apjtb.2016.11.023.
Al-Hatmi, A. M., Meis, J. F & de Hoog, G. S. (2016). Fusarium: molecular diversity and intrinsic drug resistance. Plant Pathology, 12(4), e1005464. https://doi.org/10.1371/journal.ppat.1005464
Alizadeh, B. B., Tabatabaei, Y. F., Vasiee, A., & Mortazavi, S. A. (2018). Oliveria decumbens essential oil: Chemical compositions and antimicrobial activity against the growth of some clinical and standard strains causing infection. Microbial Pathogenesis, 114, 449-452. doi: 10.1016/j.micpath.2017.12.033.
Benelli,G.,Flamini, G., Canale, A., & Conti, B. (2012). Toxicity of some essential oil formulations against the Mediterranean fruit fly Ceratitis capitata(Wiedemann)(Diptera Tephritidae). Crop Protection, 42, 223-229. https://doi.org/10.1016/j.cropro.2012.05.024
Biswas, S., Koul, M., and Bhatnagar, A. K. (2011). Effect of salt, drought and metal stress on essential oil yield and quality in plants. Natural Product Communications, 6(10), 1559-1564. https://doi.org/10.1177/1934578X1100601036
Boumaaza, B., Benkhelifa, M., & Belkhoudja, M. (2015). Effects of two salts compounds on mycelial growth, sporulation, and spore germination of six isolates of Botrytis cinerea in the western north of Algeria. International Journal of Microbiology, 2015. ID 572626. https://doi.org/10.1155/2015/572626
British Pharmacopoeia Commission. British Pharmacopoeia. London: TSO (2016).https://www.tsoshop.co.uk/?Action=Book&ProductId=9780113230006
Campos, E. V., Proença, P. L., Oliveira, J. L., Bakshi, M., Abhilash, P. C., & Fraceto, L. F. (2019). Use of botanical insecticides for sustainable agriculture: future perspectives. Ecological Indicators, 105, 483-495.https://doi.org/10.1016/j.ecolind.2018.04.038
Choe, E., and Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety, 5, 169-186. https://doi10.1111/1541-4337.12006
Corkley, I., Fraaije, B., & Hawkins, N. (2021). Fungicide resistance management: Maximizing the effective life of plant protection products. Plant Pathology, 71(1), 150-169.https://doi.org/10.1111/ppa.13467
Edel-Hermann, V., & Lecomte, C. (2019). Current status of Fusarium oxysporumformae speciales and races. Phytopathology, 109, 512-530. https://doi.org/10.1094/PHYTO-08-18-0320-RVW
de Souza, E. L., Montenegro Stamford, T. L., Lima, EdeO., Barbosa Filho, J. M., & Mayo Marques, M. O. (2008). Interference of heating on the antimicrobial activity and chemical composition of Origanum vulgare L. (Lamiaceae) essential oil. Ciência Tecnologia de AlimentosCampinas, 28(2), 418-422. https://www.scielo.br/j/cta/a/kNxCJnWT6G98YrrbjZxmB7K/?format=pdf&lang=en
Galovičová, L., Borotová, P., Valková, V., Vukovic, N., Vukic, M., Štefániková, J., Ďúranová, H., & Kowalczewski, P. (2021). Thymus vulgaris essential oil and its biological activity. Plants, 10(9), 1959. https://doi.org/10.3390/plants10091959
Gao, S., Kunpeng, Z., Luting, W., Guanyun, W., Wenfeng, X., Yaoyao, L., Yonglei, Z., Aoxiang, G., & Bin, L. (2020). Insecticidal activity of Artemisia vulgaris essential oil and transcriptome analysis of Tribolium castaneum in response to oil exposure. Frontiers in Genetics, 25(11), 589. doi: 10.3389/fgene.2020.00589.
Gao, T., Zhou, H., Zhou, W., Hu, L., & Chen, J. (2016). The fungicidal activity of thymol against Fusarium graminearum via inducing lipid peroxidation and disrupting ergosterol biosynthesis. Molecules, 21(6), 770. https://doi.org/10.3390/molecules21060770
Gema, N. (2020). A review on applications and uses of Thymus in the food industry. Plants (Basel), 9(8), 961. doi: 10.3390/plants9080961
Kolsum, D., Hojjatollah, S., & Ali Reza, K. (2017). Down-regulatory effect of Thymus vulgaris L. on growth and Tri4 gene expression in Fusarium oxysporum strain. Microbial Pathogenesis, 104, 1-5. https://doi.org/10.1016/j.micpath.2017.01.011
Kozera, W., Majcherczak, E., Barczak, B., Knapowski, T., Wszelaczyńska, E., & Pobereżny, J. (2015). Response of the yield and mineral composition of garden thyme (Thymus vulgaris L.) herbage to various NPK proportions. Journal of Elementology, 20(4), 921-931. https://doi.org/10.5601/jelem.2015.20.1.802
Kumar, A. R., Shukla, P., Singh, C. S., Prasad, N. K., & Dubey. (2007). Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungi infestation of food commodities. Innovative Food Science and Emerging Technologies, 9(4), 575-580. https://doi.org/10.1016/j.ifset.2007.12.005
Lombard, L., Sandoval-Denis, M., Lamprecht, S. C., & Crous, P. W. (2019). Epitypification of Fusarium oxysporum: Clearing the taxonomic chaos. Persoonia, 43, 1-47. https://doi.org/10.3767/persoonia.2019.43.01
Marín-Tinoco, R. I., Camacho-Luis, A., Silva-Marrufo, O., Diaz-Diaz, M., & Ortega-Ramirez, A. T. (2021). Inhibition of Candida albicans by oregano (Lippia spp.) essential oil from municipality of Rodeo, Durango, Mexico. Journal of Microbiology & Health Education, 3(1), 70-76. http://journalmhe.org/ojs3/index.php/jmhe/article/view/14
Meena, R. S., Kumar, S., Datta, R., Lal, R., Vijayakumar, V., Brtnicky, M., Sharma, M. P., Yadav, G. S., Jhariya, M. K., Jangir, C. K., Pathan, S. I., Dokulilova, T., Pecina, V., & Marfo, T. D. (2020). Impact of agrochemicals on soil microbiota and management: AReview. Land, 9(2), 34. https://doi.org/10.3390/land9020034
Moghaddam, M. and Mehdizadeh, L. (2020). Chemical composition and antifungal activity of essential oil of Thymus vulgaris grown in Iran against some plant pathogenic fungi. Journal of Essential Oil Bearing Plants, 23(5), 1072-1083. doi.org/10.1080/0972060X.2020.1843547
Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D.N., Karbancioglu-Guler, F., & Capanoglu, E. (2020). Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review". Molecules, 25(20), 4711. https://doi.org/10.3390/molecules25204711
Perumal, A. B., Sellamuthu, P. S., Nambiar, R. B., & Sadiku, E. R. (2016). Antifungal activity of five different essential oils in vapour phase for the control of Colletotrichum gloeosporioides and Lasiodiplodia theobromae in vitro and on mango. International Journal of Food Science and Technology, 51(2), 411-418. https://doi.org/10.1111/ijfs.12991
Rasooli, I. and Owlia, P. (2005). Chemoprevention by thyme oils of Aspergillus parasiticus growth and aflatoxin production. Phytochemistry, 66(24), 2851-2856. https://doi.org/10.1016/j.phytochem.2005.09.029
Scollard, J., McManamon, O., & Schmalenberger, A. (2016). Inhibition of Listeria monocytogenes growth on fresh-cut produce with thyme essential oil and essential oil compound verbenone. Postharvest Biology and Technology, 120, 61-68. https://doi.org/10.1016/j.postharvbio.2016.05.005
Silva-Marrufo, O. and Marín-Tinoco. R. I. (2021). Substitute of synthetic chemical fungicides using oregano essential oil for controlling Fusarium oxysporum. Gestión y Ambiente, 24(3), 73-80. https://doi.org/10.15446/ga.v24nSupl3.95526
Souza, L. K. H., Oliveira, C. M. A., Ferri, P. H., Santos, S. C., Oliveira Júnior, J. G., Miranda, A. T. B., Lião, L. M., & Silva, M. R. R. (2002). Antifungal properties of brazilian cerrado plants. Brazilian Journal of Microbiology, 33(3), 247-249. https://doi.org/10.1590/S1517-83822002000300012
Stancheva, I., Geneva, M., Markovska, Y., Tzvetkova, & Mitova, N. (2014). A comparative study on plant morphology, gas exchange parameters, and antioxidant response of Ocimum basilicum L. and Origanum vulgare L. grown on industrially polluted soil. Turkish Journal of Biology, 38(1), 89-102. https://doi.org/10.3906/biy-1304-94
StatBox®, Version 6.0.4 (Grimmer Soft, Fr). (2009). Company in France, Europe.89 Governor General Street Eboué 92136 Issy-les-Moulineaux France.
Turek, C., and Stintzing, F. C. (2012). Impact of different storage conditions on the quality of selected essential oils. Food Research International, 46, 341-353. https://doi.org/10.1016/j.foodres.2011.12.028
Turgis, M., Vu K. D., Dupont, C., & Lacroix, M. (2012).Combined antimicrobial effect of essential oils and bacteriocins against foodborne pathogens and food spoilage bacteria. Food Research International, 48(2), 696-702. https://doi.org/10.1016/j.foodres.2012.06.016
Xing, F., Hua, H., Selvaraj, J. N., Zhao, Y., & Zhou, L. (2014).Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde. Food Control, 46, 343-350. https://doi.org/10.1016/j.foodcont.2014.04.037
Yilar, M., Bayar, Y., & Abaci, B. A. A. (2020). Allelopathic and antifungal potentials of endemic Salvia absconditiflora Greuter & Burdet collected from different locations in Turkey. Allelopathy Journal, 49(2), 243-25. https://doi.0rg/10.26651/allelo.j/2020-49-2-1268
Publicado
2022-08-22
Cómo citar
Boumaaza, B., Benada, M., Boudalia, S., Benzohra, I. E., Gacemi, A., Khaladi, O., & Benkhelifa, M. (2022). Efecto de los niveles de salinidad sobre la actividad antifúngica del aceite esencial de Thymus contra Fusarium oxysporum. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(3), e223941. Recuperado a partir de https://produccioncientificaluz.org/index.php/agronomia/article/view/38616
Sección
Producción Vegetal