Biosólidos como fertilizante en el cultivo de tomate

Palabras clave: Lodos de aguas residuales, enmiendas, Solanum lycopersicum, patógenos, inocuo

Resumen

Los lodos producidos en las plantas de tratamientos de aguas residuales constituyen una alternativa potencial para reemplazar fertilizantes tradicionales y disminuir costos en las actividades agrícolas. El objetivo de este trabajo fue comparar el desempeño de los lodos producidos en la planta de tratamiento de aguas residuales de Sotaquirá-Colombia, con los fertilizantes tradicionalmente empleados sobre el cultivo de tomate (Solanum lycopersicum L.). Para ello, los lodos fueron previamente estabilizados con dos tratamientos diferentes: deshidratación y adición de óxido de calcio (CaO). Posteriormente, cuatro tratamientos fueron aplicados en plántulas de tomate, 135 g.kg-1 de biosólido deshidratado; 135 g.kg-1 biosólido estabilizado con CaO; 135 g.kg-1 de ABIMGRA®, 135 g.kg-1 de naturcomplet®-G y suelo del invernadero sin biosólidos. La altura de la planta, la masa fresca y seca, el área foliar y frutos por planta, se midieron a los 0, 30, 60 y 90 días después de la siembra (DDS). En los frutos de tomate se determinaron las concentraciones de metales pesados, coliformes, huevos de helmintos, fagos somáticos y Salmonella sp. Los biosólidos deshidratados tuvieron un efecto significativo mayor sobre el tamaño, la masa fresca, el área foliar y el número de frutos por planta, comparado con los biosólidos alcalinos. La masa seca de las plantas (120 g. plant-1) fue similar con fertilizantes tradicionales y biosólidos. Los tomates producidos con los biosólidos presentaron niveles bajos de metales pesados y ausencia de microorganismos patógenos. En conclusión, el biosólido obtenido por deshidratación en Sotaquirá, puede ser empleado como potencial fertilizante en el cultivo de tomate.

Descargas

La descarga de datos todavía no está disponible.

Citas

ABIMGRA. (2020). Compuesto ABIMGRA®. Available from the Internet at: http://abimgra.com/site/
Agro Bayer Colombia. (2020). Available from the Internet at: https://agro.bayer.co/cultivos/tomate
Andersen, E., Ali, S., Byamukama, E., Yen, Y. and Nepal, M. (2018). Disease resistance mechanisms in plants. Genes, 9(7):339. https://doi.org/10.3390/genes9070339
Arévalo De Gauggel, and Castellano, M. (2009) Manual de fertilizantes y enmiendas. Available from the Internet at: https://www.se.gob.hn/media/files/media/Modulo_6_Manual_Fertilizantes_y_Enmiendas..pdf
Barrow, N.J. (2017). The effects of pH on phosphate uptake from the soil. Plant and Soil, 410(1-2):401-410. https://doi.org/10.1007/s11104-016-3008-9
Bojacá, C.R., Villagrán, E., Gil, R. and Franco, H. (2019). El riego y la fertilización en el cultivo del tomate. Universidad Jorge Tadeo Lozano. https://doi.org/10.2307/j.ctvc5pd2j
Castellano, J. (2011). Manual de producción de tomate de invernadero. Intagri Ed, Celaya, México. ISBN:978-607-95302-0-4.
Castellanos-Rozo, J., Galvis López, J.A., Merchán Castellanos, N.A., Manjarres Hernández, E.H. and Rojas, A.L. (2020). Assessment of two sludge stabilization methods in a wastewater treatment plant in Sotaquirá, Colombia. Universitas Scientiarum, 25(1):17-36. https://doi.org/10.11144/JAVERIANA.SC25-1.AOTS
Castellanos-Rozo, J., Merchán Castellanos, N.A., Galvis, J. and Manjarres Hernández, E.H. (2018). Dehydration of sludges in drying beds and influence on the biological activity of microorganisms. Gestion Ambiental, 21(2):242-251. https://doi.org/10.15446/ga.v21n2.75876
Chow, H.Y. and Pan, M. (2020). Fertilization value of biosolids on nutrient accumulation and environmental risks to agricultural plants. Water, Air, Soil & Pollution, 231(12):1-13. https://doi.org/10.1007/s11270-020-04946-8
Dad, K., Wahid, A., Khan, A., Anwar, A., Ali, M., Sarwar, N. and Gulshan, A.B. (2018). Nutritional status of different biosolids and their impact on various growth parameters of wheat (Triticum aestivum L.). Saudi Journal of Biological Sciences, 26(7):1423-1428. https://doi.org/10.1016/j.sjbs.2018.09.001
Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. and Robledo, C.W. (2020). InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. https://www.infostat.com.ar/
EPA. (1982). Method 120.1: Conductance (Specific Conductance, µmhos 25 °C) by Conductivity Meter. https://www.epa.gov/sites/default/files/2015-08/documents/method_120-1_1982.pdf
EPA. (1996). Method 3050b. Acid digestion of sediments, sludges, and soils. https://www.epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf
EPA. (2004). Method 9045 D. Soil and waste pH. Washington, DC. https://www.epa.gov/sites/default/files/2015-12/documents/9045d.pdf
EPA. (2006). Method 1682: Salmonella in sewage sludge (biosolids) by modified semisolid Rappaport-Vassiliadis (MSRV) Medium. https://www.epa.gov/sites/production/files/201508/documents/method_1682_2006.pdf
García Galvis J., Ballesteros M.I. (2006). Evaluación de los parámetros de calidad para la determinación de fósforo disponible en suelos. Revista Colombiana de Química, 35(1): 81-89. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-28042006000100008&lng=en&nrm=is&tlng=es
Gardner, F.P., Pearce, R.B. and Mitchell, R.L. (2003). Physiology of crop plants. Blackwell, Iowa, 326p. https://www.cabdirect.org/cabdirect/abstract/20043025286
Giannakis, I., Emmanouil, C., Mitrakas, M., Manakou, V. and Kungolos, A. (2020). Chemical and ecotoxicological assessment of sludge-based biosolids used for corn field fertilization. Environmental Science and Pollution Research, 28:3797-3809. https://doi.org/10.1007/s11356-020-09165-6
Hansen, J. J., Warden, P. S. and Margolin, A. B. (2007). Inactivation of adenovirus type 5, rotavirus WA and male specific coliphage (MS2) in biosolids by lime stabilization. International Journal of Environmental Research and Public Health, 4(1): 61-67. https://doi.org/10.3390/ijerph2007010010
Hernández, A., Quero, A., Salvador, J., Rodríguez, M., Velázquez, S. and Jiménez, L. (2018). Phenology, biomass and growth analysis in forage sorghum cultivars for highplateaus. Agronomía Costarricense, 42(2):107-117. https://www.scielo.sa.cr/pdf/ac/v42n2/0377-9424-ac-42-02-107.pdf
Herrera, E.M. and Pérez, L.F. (2020). Effect of the liming on the soil chemical properties and the development of tomato crop in Sucre-Colombia, Journal of Applied Biotechnology and Bioengineering, 7(2):87-93. 10.15406/jabb.2020.07.00220
Ibenyassine, K., Mhand, R.A., Karamoko, Y., Anajjar. B., Chouibani. M., and Ennaj M.M. (2007). Bacterial pathogens recovered from vegetables irrigated by wastewater in Morocco. Journal of Environmental Health, 69(10), 47-51. PMID: 17583296
ICONTEC. (2011). Soil quality. Determination of Boro NTC 5404. Bogotá DC. https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-de-boro-ntc5404-2011.html
ICONTEC (2006). Calidad del suelo. Determinación del carbono orgánico. NTC 5403. https://1library.co/document/zwr609vy-ntc-determinacion-de-materia-organica.html
ICONTEC (2013). Standard test method for laboratory determination of water (moisture) content of soil and rock by mass. NTC 1495. https://docplayer.es/17193257-Norma-tecnica-colombiana-1495.html
Julca Otiniano, A., Meneses-Florián, L., Blas-Sevillano, R. and Bello Amez, S. (2006). Organic matter, importance, experiences and its role in agriculture. Idesia, 24:49-61. http://dx.doi.org/10.4067/S0718-34292006000100009
Lasobras, J., Dellunde, J., Jofre J. and Lucena, F. (1999). Occurrence and levels of phages proposed as surrogate indicators of enteric viruses in different types of sludges. Journal of Applied Microbiology, 86:723-729. https://doi.org/10.1046/j.1365-2672.1999.00722.x
Li, L. and Zou, Y. (2017). Induction of disease resistance by salicylic acid and calcium ion against Botrytis cinerea in tomato (Lycopersicon esculentum). Emirates Journal of Food & Agriculture, 29(1):78-82. https://doi.org/10.9755/ejfa.2016-10-1515
Méndez, J.M., Jiménez, B.E. and Barrios, J.A. (2002). Improved alkaline stabilization of municipal wastewater sludge. Water Science Technology, 46(10):139-146. https://doi.org/10.2166/wst.2002.0312
MVCT (Ministerio de Vivienda, Ciudad y Territorio). (2014). Decreto 1287 del 10 de julio del 2014. Criterios para el uso de biosólidos generados en plantas de tratamiento de aguas residuales municipales. Bogotá. https://www.suin-juriscol.gov.co/viewDocument.asp?id=1259502
Naturezza. (18 October of 2020). Naturcomplet®-G. Available from the Internet at: https://www.naturezza.com.co/productos/54/naturcomplet-g
Opala, P.A., Odendo, M. and Muyekho, F.N. (2018). Effects of lime and fertilizer on soil properties and maize yields in acid soils of Western Kenya. African Journal of Agricultural Research, 13(13):657-63. http://41.204.161.159/handle/123456789/2001
Orozco, L., Rico, R.E. and Fernandez, E.E. (2008). Microbiological profile of greenhouses in a farm producing hydroponic tomatoes. Journal of Food Protection, 1:60-65. https://doi.org/10.4315/0362-028X-71.1.60
Otieno, P.C., Nyalala, S. and Wolukau, J. (2020). Optimization of biosolids as a substrate for tomato transplant production. Advances in Horticultural Science, 34(3):313-323. https://doi.org/10.13128/ahsc-8118.
Rachel M. and Ducan M. (1996). Analysis of wastewater for use in agriculture. A laboratory manual of parasitological and bacteriological techniques. Available from the Internet at: https://www.who.int/water_sanitation_health/wastewater/labmanual.pdf?ua=
Romanos, D., Nemer, N., Khairallah, Y. and Abi Saab, M.T. (2019). Assessing the quality of sewage sludge as an agricultural soil amendment in Mediterranean habitats. International Journal of Recycling of Organic Waste in Agriculture, 8(1):377-383. https://doi.org/10.1007/s40093-019-00310-x
Santos, D.S., Teshima, E., Furiam, D.S., Araújo, R.A. and Rodrigues-Da Silva, C.M. (2017). Efeito da secagem em leito nas características físico-químicas e microbiológicas de lodo de reator anaeróbio de fluxo ascendente usado no tratamento de esgoto sanitário. Engenharia Sanitaria e Ambiental, 22(2):341-349 http://dx.doi.org/10.1590/s1413-41522016100531
Sharma, A., Soares, C., Sousa, B., Martins, M., Kumar, V., Shahzad, B., Sidhu, G., Bali, A., Asgher, M., Bhardwaj, R., Thukral, A., Fidalgo, F. and Zheng, B. (2020). Nitric oxide‐mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. Physiologia plantarum, 168(2):318-344. https://doi.org/10.1111/ppl.13004
Silva Leal, J., Bedoya Ríos, D. and Torres Lozada, P. (2013a). Efecto del secado térmico y el tratamiento alcalino en las características microbiológicas y químicas de biosólidos de plantas de tratamiento de aguas residuales domésticas. Química Nova, 36(2):207-214. https://doi.org/10.1590/S0100-40422013000200002
Silva Leal, J., Bedoya Ríos, D. and Torres Lozada, P. (2013b). Evaluation of potential application disinfecting of biosolids on radish cultive. Acta Agronómica, 62(2):155–164. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/30010/43005
Torres, L.P., Madera, P.C. and Silva, J. (2009). Eliminating pathogens in biosolids by alkaline stabilization. Acta Agronómica, 58(3):197-205. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/11516/12174
Torres, P., Silva, J., Parra, B., Cerón, V. and Madera, C. (2015). Influencia de la aplicación de biosólidos sobre el suelo, la morfología y productividad del cultivo de caña de azúcar. Revista U.D.C.A Actualidad & Divulgación Científica, 18(1):69-79. https://doi.org/10.31910/rudca.v18.n1.2015.455
Trebolazabala, J., Maguregui, M., Morillas, H., García-Fernández, Z., De Diego, A. and Madariaga, J.M. (2017). Uptake of metals by tomato plants (Solanum lycopersicum) and distribution inside the plant: Field experiments in Biscay (Basque Country). Journal of Food Composition and Analysis, 59:161-169. https://doi.org/10.1016/j.jfca.2017.02.013
Utria, E., Cabrera J.A., Reynaldo, I.M., Morales, D., Fernández, A.M. and Toledo, E. (2008). Agricultural utilization of the biosolids and influence in the tomato crop (Lycopersicon esculentum Mill). Revista Chapingo Serie Horticultura, 14(1):33-39. http://www.scielo.org.mx/pdf/rcsh/v14n1/v14n1a5.pdf
Wang, H.F., Takematsu, N. and Ambe, S. (2000). Effects of soil acidity on the uptake of trace elements in soybean and tomato plants. Applied Radiation and Isotopes, 52(4): 803-811. https://doi.org/10.1016/S0969-8043(99)00153-0
Publicado
2022-06-08
Cómo citar
Castellanos-Rozo, J., Galvis-López, J., Manjarres , E., & Merchán-Castellanos, N. (2022). Biosólidos como fertilizante en el cultivo de tomate. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(2), e223931. Recuperado a partir de https://produccioncientificaluz.org/index.php/agronomia/article/view/38243
Sección
Producción Vegetal