Cinética de secado de subproductos del Bactris gasipaes Kunth: una comparación de modelos matemáticos

  • Jorge Velasquez-Rivera Universidad Católica de Santiago de Guayaquil, Facultad de Educación Técnica para el Desarrollo, Carrera de Ingeniería Agroindustrial, C.P. 090615, Guayaquil, Ecuador. Instituto de Farmacia y Alimentos-Universidad de La Habana. C.P. 17100, Cuba. https://orcid.org/0000-0002-3500-8403
  • Jesus R. Melendez Universidad Católica de Santiago de Guayaquil, Facultad de Educación Técnica para el Desarrollo, Carrera de Ingeniería Agroindustrial, C.P. 090615, Guayaquil, Ecuador http://orcid.org/0000-0001-8936-5513
  • Manuel G. Roca-Argüelles Instituto de Farmacia y Alimentos-Universidad de La Habana. C.P. 17100, Cuba https://orcid.org/0000-0003-0543-3270
  • José L. Rodríguez-Sánchez Instituto de Investigaciones para la Industria Alimenticia-Cuba, La Habana. C.P. 17100, Cuba https://orcid.org/0000-0003-0421-1174
Palabras clave: Cinética de secado, picado, triturado, modelo matemático, residuos

Resumen

La industrialización del palmito (corazón de palma), obtenido del brote de una palma conocida como pejibaye, chontaduro o palma de melocotón (Bactris gasipaes Kunth), genera dos productos principales: la fruta y el corazón del tallo. El tallo genera un residuo que por su alta humedad es muy perecedero, por lo que el secado es una alternativa para aumentar su vida útil. El objetivo principal de este estudio fue describir cuál de los modelos matemáticos seleccionados se ajusta a una mejor cinética de secado en muestras (subproducto) de palmito (corazón de palma), de acuerdo con los criterios estadísticos seleccionados. El modelado matemático de las curvas de secado del subproducto (palmito) se realizó a dos temperaturas de trabajo (70 y 80 °C) y en dos grupos, uno troceado y el otro triturado. Los resultados del contenido de agua se procesaron estadísticamente para encontrar el modelo más conveniente entre los propuestos por otros investigadores. El cálculo de los parámetros de los diferentes modelos de secado se realizó con el programa STATISTICA versión 8.0, utilizando la herramienta de estimación no lineal, de acuerdo con el método de estimación del algoritmo cuasi-Newton. Los resultados muestran que los modelos MR = exp(-k.tn) y MR = exp(- (k.t) n), denominados Page and modified Page respectivamente, fueron los de mejor ajuste a los datos experimentales en todos los casos. Los modelos nombrados como Page y modified Page, son los que mejor se ajustaron a la información experimental y al modelo más adecuado.

Descargas

La descarga de datos todavía no está disponible.

Citas

Literature cited
Agrawal, Y. C. & Singh, R. P. (1977). Thin layer studies on short grain rough rice. Transactions of the American Society of Agricultural Engineers, 77: 3531. https://doi.org/10.13031/ISSN 0149-9890
Aregbesola, O.A., Ogunsin, B. S., Sofolahan, A. E. & Chime, N. N. (2015). Mathematical Modeling of thin layer characteristics of dika (Irvingia gobonensis) nuts and kernels. Nigerian Food Journal, 33: 83–89. https://doi.org/10.1016/j.nifoj.2015.04.012
Ayetigbo, O., Latif, S., Abass, A. & Müller, J. (2021). Drying kinetics and effect of drying conditions on selected physicochemical properties of foam from yellow-fleshed and white-fleshed cassava (Manihot esculenta) varieties. Food and Bioproducts Processing, 127: 454–464. https://doi.org/10.1016/j.fbp.2021.04.005
Baini, R. &. Langrish, T. A. G. (2007). Choosing an appropriate drying model for intermittent and continuous drying of bananas. Journal of Food Engineering, 79(1), 330–343. https://doi.org/10.1016/j.jfoodeng.2006.01.068
Bolanho, B. C., Danesi, E. D. G. & Beléia, A. D. P. (2015). Carbohydrate composition of peach palm (Bactris gasipaes Kunth) by-products flours. Carbohydrate Polymers, 124: 196–200. https://doi.org/10.1016/j.carbpol.2015.02.021
Cantu-Jungles, T. M., Cipriani, T. R., Lacomini, M., Hamaker, B.R. & Cordeiro, L. M. C. (2017). A pectic polysaccharide from peach palm fruits (Bactris gasipaes) and its fermentation profile by the human gut microbiota in vitro. Bioactive Carbohydrates and Dietary Fibre, 9: 1–6. https://doi.org/10.1016/j.bcdf.2016.11.005
Chhninman, M. S. (1984). Evaluation of selected mathematical models for describing thin layer drying of in-shell pecans. Transactions of the American Society of Agricultural Engineers, 27(2), 610–615. https://doi.org/10.13031/2013.32837
Chouaibi, M., Snoussi, A., Attouchi, S. & Ferrari, G. (2021). Influence of drying processes on bioactive compounds profiles, hydroxymethylfurfural, color parameters, and antioxidant activities of Tunisian eggplant (Solanum melongena L.). Journal of Food Processing and Preservation, e15460. https://doi.org/10.1111/jfpp.15460
Doymaz, İ. (2005). Drying characteristics and kinetics of okra. Journal of Food Engineering, 69(3), 275–279. https://doi.org/10.1016/j.jfoodeng.2004.08.019
Ertekin, C. &. Firat, M. Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57(4), 701–717. https://doi.org/10.1080/10408398.2014.910493
Ertekin, C. & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(3), 349–359. https://doi.org/10.1016/j.jfoodeng.2003.08.007
Franco, T. S., Potulski, D. C., Viana, L. C., Forville, E., de Andrade, A. S. & Bolson de Muniz, G. I. (2019). Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydrate Polymers, 218: 8–19. https://doi.org/10.1016/j.carbpol.2019.04.035
Helm, C.V., Raupp, D. S. & Santos, A. F. (2014). Development of peach palm fibrous flour from the waste generated by the heart of palm agribusiness. Acta Scientiarum. Technology, 36(1), 171–177. https://doi.org/10.4025/actascitechnol.v36i1.17165
Hernández, R., Fernández, C., Baptista, P., Méndez, S. & Mendoza, C. (2014). Metodología de la investigación. México, DF: Mcgraw-hill.
InfoStat Group. (2015). Versión libre 20151. Córdoba: Universidad Nacional de Córdoba, www.infostat.com.ar
Instituto Nacional de Preinversión. (2014). Atlas Bioenergético de la República del Ecuador. First edition. Quito: Esin-consultora S.A.
Kaleta, A. & Górnicki, K. (2010). Some remarks on evaluation of drying models of red beet particles. Energy Conversion and Management, 51(12), 2967–2978. https://doi.org/10.1016/j.enconman.2010.06.040
Karathanos, V. T. & Belessiotis, V. G. (1999). Application of a thin-layer equation to drying data of fresh and semi-dried fruits. Journal of Agricultural Engineering Research, 74(4), 355–361. https://doi.org/10.1006/jaer.1999.0473
Liu, Q. & Bakker-Arkema, F. W. (1997). Stochastic modelling of grain drying: Part 2. Model development. Journal of Agricultural Engineering Research, 66(4), 275–280. https://doi.org/10.1006/jaer.1996.0145
Melendez, J. R., Velasquez-Rivera, J., El Salous, A. & Peñalver, A. (2021). Management for the production of 2G biofuels: Review of the technological and economic scenario. Revista Venezolana de Gerencia, 26(93), 78–91. https://doi.org/10.37960/rvg.v26i93.34965
Mendoza, B., Béjar, J., Luna, D., Osorio, M., Jimenez, M. & Melendez, J. R. (2020a). Differences in the ratio of soil microbial biomass carbon (MBC) and soil organic carbon (SOC) at various altitudes of Hyperalic Alisol in the Amazon region of Ecuador. F1000Research, 9. https://doi.org/10.12688/f1000research.22922.1
Mendoza, B., Guananga, N., Melendez J. R. & Lowy, D. A. (2020b). Differences in total iron content at various altitudes of amazonian andes soil in Ecuador. F1000Research, 9: 128. https://doi.org/10.12688/f1000research.22411.1
Mokhtarian, M., Majd, M. H., Garmakhany, A. D. & Zaerzadeh, E. (2021). Predicting the moisture ratio of dried tomato slices using artificial neural network and genetic algorithm Modeling. Journal of Research and Innovation in Food Science and Technology, 9(4), 411–422. https://doi.org/10.22101/jrifst.2021.258797.1203
O’Callaghan, J. R., Menzies, D. J. & Bailey, P. H. (1971). Digital simulation of agricultural drier performance. Journal of Agricultural Engineering Research, 16(3), 223–244. https://doi.org/10.1016/S0021-8634(71)80016-1
Omolola, A. O., Kapila, P. F. & Silungwe, H. M. (2019). Mathematical Modeling of drying characteristics of Jew’s mallow (Corchorus olitorius) leaves. Information Processing in Agriculture, 6(1), 109-115. https://doi.org/10.1016/j.inpa.2018.08.003
Overhults, D. D., White, G. M., Hamilton, M. E. & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the American Society of Agricultural Engineers, 16, 195–200. https://doi.org/10.13031/2013.37459
Padilha, J. H. D., Steinmacher, D. & Quoirin, M. (2021). Peach palm plantlet growth in different culture media in a temporary immersion system. Ciência Rural, 51(3). https://doi.org/10.1590/0103-8478cr20190075
Rajoriya, D., Bhavya, M. L. &. Hebbar, H. U. (2021). Impact of process parameters on drying behaviour, mass transfer, and quality profile of refractance window dried banana puree. LWT-Food Science and Technology, 145: 111330. https://doi.org/10.1016/j.lwt.2021.111330
Rezzadori, K., Benedetti, S. & Amante, E. R. (2012). Proposals for the residues recovery: Orange waste as raw material for new products. Food and Bioproducts Processing, 90(4), 606–614. https://doi.org/10.1016/j.fbp.2012.06.002
Ribeiro, S. A., Coneglian, R. C. C., Da Silva, B. C., De Deco, T. A., Prudêncio, E. R. & Dias, A. (2021). Shelf life extension of peach palm heart packed in different plastic packages. Horticultura Brasileira, 39(1), 26–31. https://doi.org/10.1590/s0102-0536-20210104
Rojas-Garbanzo, C., Pérez, A. M., Pineda Castro, M. L. & Vaillan, F. (2012). Major physicochemical and antioxidant changes during peach-palm (Bactris gasipaes H.B.K.) flour processing. Fruits, 67(6), 415–427. https://doi.org/10.1051/fruits/2012035
Sadaka, S. (2020). Reanalyze previous data to develop a universal kinetic model for grain sorghum drying process. In 2020 ASABE Annual International Virtual Meeting (p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/aim.202000218
Santacruz, S., Cárdenas, G. y Mero, V. (2020). Compuestos fenólicos y aceite de semillas de naranja y maracuyá. Revista de la Facultad de Agronomía de la Universidad del Zulia, 37(1), 51–68. https://cutt.ly/fEgZ6bQ
Schroth, G., Elias, M. E. A., Macêdo, J. L., Mota, M. S. S. & Lieberei, R. (2002). Mineral nutrition of peach palm (Bactris gasipaes) in Amazonian agroforestry and recommendations for foliar analysis. European Journal of Agronomy, 17(2), 81–92. https://doi.org/10.1016/S1161-0301(01)00142-3
Sharma, G. P., Verma, R. C. & Pathare, P. (2005). Mathematical Modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71(3), 282–286. https://doi.org/10.1016/j.jfoodeng.2005.02.010
Shi, J., Pan, Z., McHugh, T. H., Wood, D., Hirschberg, E. & Olson, D. (2008). Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT-Food Science and Technology, 41(10), 1962–1972. https://doi.org/10.1016/j.lwt.2008.01.003
Simal, S., Femenia, A., Garau, M. C. & Rosselló, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66: 323–328. https://doi.org/10.1016/j.jfoodeng.2004.03.025
Simpson, R., Ramírez, C., Nuñez, H., Jaques, A. & Almonacid, S. (2017). Understanding the success of Page’s model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends in Food Science and Technology, 62: 194–201. https://doi.org/10.1016/j.tifs.2017.01.003
Sozzi, A., Zambon, M., Mazza, G. & Salvatori, D. (2021). Fluidized bed drying of blackberry wastes: Drying kinetics, particle characterization and nutritional value of the obtained granular solids. Powder Technology, 385: 37–49. https://doi.org/10.1016/j.powtec.2021.02.058
StatSoft Inc. (2007). Statistica (Data Analysis Software System) version 8.0 www.statsoft.com. Palo Alto, California, USA.
Taghian-Dinani, S., Hamdami, N., Shahedi, M. & Havet, M. (2014). Mathematical Modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices. Energy Conversion and Management, 86, 70–80. https://doi.org/10.1016/j.enconman.2014.05.010
Toǧrul, H. (2006). Suitable drying model for infrared drying of carrot. Journal of Food Engineering, 77(3), 610–619. https://doi.org/10.1016/j.jfoodeng.2005.07.020
Togrul, I. T. & Pehlivan, D. (2002). Mathematical modelling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3), 209–216. https://doi.org/10.1016/S0260-8774(02)00065-1
Velásquez, J. R., Roca-Argüelles, M., Rodríguez-Sánchez, J. L., Díaz, R., Hernández-Monzón, A. y Montiel, C. (2017). Caracterización de la harina de subproductos de palmito. Ciencia y Tecnología de Alimentos, 27(1), 24–28. https://cutt.ly/CEgJXN2
Vieira, T. F., Corrêa, R. C. G., Moreira, R. D. F. P. M., Peralta, R. A., de Lima, E. A., Helm, C. V., ... & Peralta, R. M. (2021). Valorization of Peach Palm (Bactris gasipaes Kunth) Waste: Production of Antioxidant Xylooligosaccharides. Waste and Biomass Valorization, 1-14. https://doi.org/10.1007/s12649-021-01457-3
Waldron, K. W., Parker, M. L. & Smith, A. C. (2003). Plant cell walls and food quality. Comprehensive Reviews in Food Science and Food Safety, 2(4), 128–146. https://doi.org/10.1111/j.1541-4337.2003.tb00019.x
Westerman, P. W., White, G. M. & Ross, I. J. (1973). Relative humidity effect on the high temperature drying of shelled corn. Transactions of the American Society of Agricultural Engineers, 16: 1136–1139. https://doi.org/10.13031/2013.37715
White, G.M., Ross, I. J. & Ponelert, R. (1981). Fully exposed drying of popcorn. Transactions of the American Society of Agricultural Engineers, 24:466–468. https://doi.org/10.13031/2013.34276
Yaldiz, O. & Ertekin, C. (2001). Thin layer solar drying some different vegetables. Drying Technology, 19(3–4), 583–597. https://doi.org/10.1081/DRT-100103936
Zhang, Q. & Litchfield, J. B. (1991). An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Drying Technology, 9(2), 383–395. https://doi.org/10.1080/07373939108916672
Zhao, P., Ge, S., Ma, D., Areeprasert, C. & Yoshikawa, K. (2014). Effect of hydrothermal pretreatment on convective drying characteristics of paper sludge. ACS Sustainable Chemistry & Engineering, 2(4), 665–671. https://doi.org/10.1021/sc4003505
Publicado
2021-12-16
Cómo citar
Velasquez-Rivera, J., Melendez, J. R., Roca-Argüelles, M. G., & Rodríguez-Sánchez, J. L. (2021). Cinética de secado de subproductos del Bactris gasipaes Kunth: una comparación de modelos matemáticos. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(1), e223901. Recuperado a partir de https://produccioncientificaluz.org/index.php/agronomia/article/view/37266
Sección
Tecnología de Alimentos