Kinetics of drying Bactris gasipaes Kunth sub-products: comparison of mathematical models

  • Jorge Velasquez-Rivera Universidad Católica de Santiago de Guayaquil, Facultad de Educación Técnica para el Desarrollo, Carrera de Ingeniería Agroindustrial, C.P. 090615, Guayaquil, Ecuador. Instituto de Farmacia y Alimentos-Universidad de La Habana. C.P. 17100, Cuba. https://orcid.org/0000-0002-3500-8403
  • Jesus R. Melendez Universidad Católica de Santiago de Guayaquil, Facultad de Educación Técnica para el Desarrollo, Carrera de Ingeniería Agroindustrial, C.P. 090615, Guayaquil, Ecuador http://orcid.org/0000-0001-8936-5513
  • Manuel G. Roca-Argüelles Instituto de Farmacia y Alimentos-Universidad de La Habana. C.P. 17100, Cuba https://orcid.org/0000-0003-0543-3270
  • José L. Rodríguez-Sánchez Instituto de Investigaciones para la Industria Alimenticia-Cuba, La Habana. C.P. 17100, Cuba https://orcid.org/0000-0003-0421-1174
Keywords: Kinetics of drying, chopped, crushed, mathematical model, waste

Abstract

The industrialization of the heart of palm (palm heart), obtained from the sprout of a palm known as pejibaye, chontaduro, or peach palm (Bactris gasipaes Kunth), generates two main products: the fruit and the heart of the stem. The stem produces a highly perishable residue due to its high humidity, making drying an alternative to increase its useful life. The main objective of this study was to describe which of the selected mathematical models conform to better drying kinetics in samples (by-product) of palm heart (palm heart), according to the selected statistical criteria. Mathematical Modeling of the by-product drying curves (the heart of palm) was performed at two working temperatures (70 and 80 °C) and two groups, one minced and the other ground. The results of the water content were statistically processed to find the most convenient model among those proposed by other researchers. The calculation of the parameters of the different drying models was carried out with the STATISTICA version 8.0 program, using the non-linear estimation tool, according to the quasi-Newton algorithm estimation method. The results show that the models MR = exp(-k.tn) and MR = exp(-(k.t)n), called Page and modified Page respectively, were the best fit to the experimental data in all cases. Therefore, the models named Page and modified Page best fit the innovative information and the most suitable model.

Downloads

Download data is not yet available.

References

Literature cited
Agrawal, Y. C. & Singh, R. P. (1977). Thin layer studies on short grain rough rice. Transactions of the American Society of Agricultural Engineers, 77: 3531. https://doi.org/10.13031/ISSN 0149-9890
Aregbesola, O.A., Ogunsin, B. S., Sofolahan, A. E. & Chime, N. N. (2015). Mathematical Modeling of thin layer characteristics of dika (Irvingia gobonensis) nuts and kernels. Nigerian Food Journal, 33: 83–89. https://doi.org/10.1016/j.nifoj.2015.04.012
Ayetigbo, O., Latif, S., Abass, A. & Müller, J. (2021). Drying kinetics and effect of drying conditions on selected physicochemical properties of foam from yellow-fleshed and white-fleshed cassava (Manihot esculenta) varieties. Food and Bioproducts Processing, 127: 454–464. https://doi.org/10.1016/j.fbp.2021.04.005
Baini, R. &. Langrish, T. A. G. (2007). Choosing an appropriate drying model for intermittent and continuous drying of bananas. Journal of Food Engineering, 79(1), 330–343. https://doi.org/10.1016/j.jfoodeng.2006.01.068
Bolanho, B. C., Danesi, E. D. G. & Beléia, A. D. P. (2015). Carbohydrate composition of peach palm (Bactris gasipaes Kunth) by-products flours. Carbohydrate Polymers, 124: 196–200. https://doi.org/10.1016/j.carbpol.2015.02.021
Cantu-Jungles, T. M., Cipriani, T. R., Lacomini, M., Hamaker, B.R. & Cordeiro, L. M. C. (2017). A pectic polysaccharide from peach palm fruits (Bactris gasipaes) and its fermentation profile by the human gut microbiota in vitro. Bioactive Carbohydrates and Dietary Fibre, 9: 1–6. https://doi.org/10.1016/j.bcdf.2016.11.005
Chhninman, M. S. (1984). Evaluation of selected mathematical models for describing thin layer drying of in-shell pecans. Transactions of the American Society of Agricultural Engineers, 27(2), 610–615. https://doi.org/10.13031/2013.32837
Chouaibi, M., Snoussi, A., Attouchi, S. & Ferrari, G. (2021). Influence of drying processes on bioactive compounds profiles, hydroxymethylfurfural, color parameters, and antioxidant activities of Tunisian eggplant (Solanum melongena L.). Journal of Food Processing and Preservation, e15460. https://doi.org/10.1111/jfpp.15460
Doymaz, İ. (2005). Drying characteristics and kinetics of okra. Journal of Food Engineering, 69(3), 275–279. https://doi.org/10.1016/j.jfoodeng.2004.08.019
Ertekin, C. &. Firat, M. Z. (2017). A comprehensive review of thin-layer drying models used in agricultural products. Critical Reviews in Food Science and Nutrition, 57(4), 701–717. https://doi.org/10.1080/10408398.2014.910493
Ertekin, C. & Yaldiz, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(3), 349–359. https://doi.org/10.1016/j.jfoodeng.2003.08.007
Franco, T. S., Potulski, D. C., Viana, L. C., Forville, E., de Andrade, A. S. & Bolson de Muniz, G. I. (2019). Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydrate Polymers, 218: 8–19. https://doi.org/10.1016/j.carbpol.2019.04.035
Helm, C.V., Raupp, D. S. & Santos, A. F. (2014). Development of peach palm fibrous flour from the waste generated by the heart of palm agribusiness. Acta Scientiarum. Technology, 36(1), 171–177. https://doi.org/10.4025/actascitechnol.v36i1.17165
Hernández, R., Fernández, C., Baptista, P., Méndez, S. & Mendoza, C. (2014). Metodología de la investigación. México, DF: Mcgraw-hill.
InfoStat Group. (2015). Versión libre 20151. Córdoba: Universidad Nacional de Córdoba, www.infostat.com.ar
Instituto Nacional de Preinversión. (2014). Atlas Bioenergético de la República del Ecuador. First edition. Quito: Esin-consultora S.A.
Kaleta, A. & Górnicki, K. (2010). Some remarks on evaluation of drying models of red beet particles. Energy Conversion and Management, 51(12), 2967–2978. https://doi.org/10.1016/j.enconman.2010.06.040
Karathanos, V. T. & Belessiotis, V. G. (1999). Application of a thin-layer equation to drying data of fresh and semi-dried fruits. Journal of Agricultural Engineering Research, 74(4), 355–361. https://doi.org/10.1006/jaer.1999.0473
Liu, Q. & Bakker-Arkema, F. W. (1997). Stochastic modelling of grain drying: Part 2. Model development. Journal of Agricultural Engineering Research, 66(4), 275–280. https://doi.org/10.1006/jaer.1996.0145
Melendez, J. R., Velasquez-Rivera, J., El Salous, A. & Peñalver, A. (2021). Management for the production of 2G biofuels: Review of the technological and economic scenario. Revista Venezolana de Gerencia, 26(93), 78–91. https://doi.org/10.37960/rvg.v26i93.34965
Mendoza, B., Béjar, J., Luna, D., Osorio, M., Jimenez, M. & Melendez, J. R. (2020a). Differences in the ratio of soil microbial biomass carbon (MBC) and soil organic carbon (SOC) at various altitudes of Hyperalic Alisol in the Amazon region of Ecuador. F1000Research, 9. https://doi.org/10.12688/f1000research.22922.1
Mendoza, B., Guananga, N., Melendez J. R. & Lowy, D. A. (2020b). Differences in total iron content at various altitudes of amazonian andes soil in Ecuador. F1000Research, 9: 128. https://doi.org/10.12688/f1000research.22411.1
Mokhtarian, M., Majd, M. H., Garmakhany, A. D. & Zaerzadeh, E. (2021). Predicting the moisture ratio of dried tomato slices using artificial neural network and genetic algorithm Modeling. Journal of Research and Innovation in Food Science and Technology, 9(4), 411–422. https://doi.org/10.22101/jrifst.2021.258797.1203
O’Callaghan, J. R., Menzies, D. J. & Bailey, P. H. (1971). Digital simulation of agricultural drier performance. Journal of Agricultural Engineering Research, 16(3), 223–244. https://doi.org/10.1016/S0021-8634(71)80016-1
Omolola, A. O., Kapila, P. F. & Silungwe, H. M. (2019). Mathematical Modeling of drying characteristics of Jew’s mallow (Corchorus olitorius) leaves. Information Processing in Agriculture, 6(1), 109-115. https://doi.org/10.1016/j.inpa.2018.08.003
Overhults, D. D., White, G. M., Hamilton, M. E. & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the American Society of Agricultural Engineers, 16, 195–200. https://doi.org/10.13031/2013.37459
Padilha, J. H. D., Steinmacher, D. & Quoirin, M. (2021). Peach palm plantlet growth in different culture media in a temporary immersion system. Ciência Rural, 51(3). https://doi.org/10.1590/0103-8478cr20190075
Rajoriya, D., Bhavya, M. L. &. Hebbar, H. U. (2021). Impact of process parameters on drying behaviour, mass transfer, and quality profile of refractance window dried banana puree. LWT-Food Science and Technology, 145: 111330. https://doi.org/10.1016/j.lwt.2021.111330
Rezzadori, K., Benedetti, S. & Amante, E. R. (2012). Proposals for the residues recovery: Orange waste as raw material for new products. Food and Bioproducts Processing, 90(4), 606–614. https://doi.org/10.1016/j.fbp.2012.06.002
Ribeiro, S. A., Coneglian, R. C. C., Da Silva, B. C., De Deco, T. A., Prudêncio, E. R. & Dias, A. (2021). Shelf life extension of peach palm heart packed in different plastic packages. Horticultura Brasileira, 39(1), 26–31. https://doi.org/10.1590/s0102-0536-20210104
Rojas-Garbanzo, C., Pérez, A. M., Pineda Castro, M. L. & Vaillan, F. (2012). Major physicochemical and antioxidant changes during peach-palm (Bactris gasipaes H.B.K.) flour processing. Fruits, 67(6), 415–427. https://doi.org/10.1051/fruits/2012035
Sadaka, S. (2020). Reanalyze previous data to develop a universal kinetic model for grain sorghum drying process. In 2020 ASABE Annual International Virtual Meeting (p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/aim.202000218
Santacruz, S., Cárdenas, G. y Mero, V. (2020). Compuestos fenólicos y aceite de semillas de naranja y maracuyá. Revista de la Facultad de Agronomía de la Universidad del Zulia, 37(1), 51–68. https://cutt.ly/fEgZ6bQ
Schroth, G., Elias, M. E. A., Macêdo, J. L., Mota, M. S. S. & Lieberei, R. (2002). Mineral nutrition of peach palm (Bactris gasipaes) in Amazonian agroforestry and recommendations for foliar analysis. European Journal of Agronomy, 17(2), 81–92. https://doi.org/10.1016/S1161-0301(01)00142-3
Sharma, G. P., Verma, R. C. & Pathare, P. (2005). Mathematical Modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71(3), 282–286. https://doi.org/10.1016/j.jfoodeng.2005.02.010
Shi, J., Pan, Z., McHugh, T. H., Wood, D., Hirschberg, E. & Olson, D. (2008). Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT-Food Science and Technology, 41(10), 1962–1972. https://doi.org/10.1016/j.lwt.2008.01.003
Simal, S., Femenia, A., Garau, M. C. & Rosselló, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66: 323–328. https://doi.org/10.1016/j.jfoodeng.2004.03.025
Simpson, R., Ramírez, C., Nuñez, H., Jaques, A. & Almonacid, S. (2017). Understanding the success of Page’s model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends in Food Science and Technology, 62: 194–201. https://doi.org/10.1016/j.tifs.2017.01.003
Sozzi, A., Zambon, M., Mazza, G. & Salvatori, D. (2021). Fluidized bed drying of blackberry wastes: Drying kinetics, particle characterization and nutritional value of the obtained granular solids. Powder Technology, 385: 37–49. https://doi.org/10.1016/j.powtec.2021.02.058
StatSoft Inc. (2007). Statistica (Data Analysis Software System) version 8.0 www.statsoft.com. Palo Alto, California, USA.
Taghian-Dinani, S., Hamdami, N., Shahedi, M. & Havet, M. (2014). Mathematical Modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices. Energy Conversion and Management, 86, 70–80. https://doi.org/10.1016/j.enconman.2014.05.010
Toǧrul, H. (2006). Suitable drying model for infrared drying of carrot. Journal of Food Engineering, 77(3), 610–619. https://doi.org/10.1016/j.jfoodeng.2005.07.020
Togrul, I. T. & Pehlivan, D. (2002). Mathematical modelling of solar drying of apricots in thin layers. Journal of Food Engineering, 55(3), 209–216. https://doi.org/10.1016/S0260-8774(02)00065-1
Velásquez, J. R., Roca-Argüelles, M., Rodríguez-Sánchez, J. L., Díaz, R., Hernández-Monzón, A. y Montiel, C. (2017). Caracterización de la harina de subproductos de palmito. Ciencia y Tecnología de Alimentos, 27(1), 24–28. https://cutt.ly/CEgJXN2
Vieira, T. F., Corrêa, R. C. G., Moreira, R. D. F. P. M., Peralta, R. A., de Lima, E. A., Helm, C. V., ... & Peralta, R. M. (2021). Valorization of Peach Palm (Bactris gasipaes Kunth) Waste: Production of Antioxidant Xylooligosaccharides. Waste and Biomass Valorization, 1-14. https://doi.org/10.1007/s12649-021-01457-3
Waldron, K. W., Parker, M. L. & Smith, A. C. (2003). Plant cell walls and food quality. Comprehensive Reviews in Food Science and Food Safety, 2(4), 128–146. https://doi.org/10.1111/j.1541-4337.2003.tb00019.x
Westerman, P. W., White, G. M. & Ross, I. J. (1973). Relative humidity effect on the high temperature drying of shelled corn. Transactions of the American Society of Agricultural Engineers, 16: 1136–1139. https://doi.org/10.13031/2013.37715
White, G.M., Ross, I. J. & Ponelert, R. (1981). Fully exposed drying of popcorn. Transactions of the American Society of Agricultural Engineers, 24:466–468. https://doi.org/10.13031/2013.34276
Yaldiz, O. & Ertekin, C. (2001). Thin layer solar drying some different vegetables. Drying Technology, 19(3–4), 583–597. https://doi.org/10.1081/DRT-100103936
Zhang, Q. & Litchfield, J. B. (1991). An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Drying Technology, 9(2), 383–395. https://doi.org/10.1080/07373939108916672
Zhao, P., Ge, S., Ma, D., Areeprasert, C. & Yoshikawa, K. (2014). Effect of hydrothermal pretreatment on convective drying characteristics of paper sludge. ACS Sustainable Chemistry & Engineering, 2(4), 665–671. https://doi.org/10.1021/sc4003505
Published
2021-12-16
How to Cite
Velasquez-Rivera, J., Melendez, J. R., Roca-Argüelles, M. G., & Rodríguez-Sánchez, J. L. (2021). Kinetics of drying Bactris gasipaes Kunth sub-products: comparison of mathematical models . Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(1), e223901. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/37266
Section
Food Technology