A hardware implementation of Compressive Sensing Theory.

  • Alexis Velázquez Universidad de Los Andes-Venezuela
  • José Luis Paredes Universidad de Los Andes- Venezuela
  • Francisco Viloria Universidad de Los Andes-Venezuela
Palabras clave: compressive sensing, sparse signals, signal reconstruction, matching pursuit

Resumen

In this paper, the new theory of compressive sensing (CS) that unifies signal sensing and compression into a single task is implemented on a Digital Signal Processing (DSP) board. An iterative algorithm for signal reconstruction known as Matching Pursuit is implemented on the DSP and used to the reconstruction of real signals from a reduced set of random projections. Two kinds of validation procedures are used to test the reconstruction algorithm implemented. More precisely, sparse signals synthesized on the DSP and sparse signals generated by a special-purpose generator are used to experimentally test the compressive sensing theory verifying in this way its potential. It is shown that the CS theory is able to recover the most significant values of the underlying signal, while yielding negligible differences between the original signals and the reconstructed ones.

Descargas

La descarga de datos todavía no está disponible.
Cómo citar
Velázquez, A., Paredes, J. L. y Viloria, F. (1) «A hardware implementation of Compressive Sensing Theory.», Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 34(3). Disponible en: https://produccioncientificaluz.org/index.php/tecnica/article/view/7193 (Accedido: 23diciembre2024).
Sección
Artículos de Investigación