Influencia de los Parámetros de Corte en el Torneado Duro del Acero AISI 4140
Resumen
Los intercambiadores de calor de placas soldadas son equipos fundamentales para los procesos de esterilización
en la industria farmacéutica, por lo que es crucial diseñar planes de mantenimiento eficaces para evitar fallos que
puedan comprometer la confiabilidad de estos procesos. El objetivo de esta investigación fue determinar, mediante la
simulación de Montecarlo, una política óptima de mantenimiento para estos intercambiadores. Se utilizó una
metodología descriptiva, aplicada y transversal basada en un diseño de campo. Se estudiaron siete intercambiadores
de calor en una planta farmacéutica, sirviendo como población y muestra. Los instrumentos de recolección de datos
incluyeron la revisión de registros existentes y la validación por expertos. El estudio demostró que la distribución
Weibull es una herramienta útil para modelar los tiempos de falla de los intercambiadores y reveló que el tiempo
óptimo de reemplazo es de aproximadamente 1,7 años, con un costo mínimo asociado de US$2.139. Estos hallazgos
resultan esenciales para la planificación eficaz del mantenimiento y reemplazo de los equipos, así como para la
optimización de los recursos económicos. Sin embargo, se reconoce la necesidad de una muestra más grande y de más
datos para reforzar estas conclusiones.
Descargas
Citas
Abbas, A. T., Anwar, S., Hegab, H., Benyahia, F., Ali, H., Elkaseer, A. (2020a). Comparative evaluation of surface quality, tool wear, and specific cutting energy for wiper and conventional carbide inserts in hard turning of AISI 4340 alloy steel. Materials, 13, 5233.
Abbas, A. T., El Rayes, M. M., Luqman, M., Naeim, N., Hegab, H., Elkaseer, A. (2020b). On the assessment of surface quality and productivity aspects in precision hard turning of AISI 4340 steel alloy: relative performance of wiper vs. conventional inserts. Materials, 13, 2036.
Abrão, A. M., Aspinwall, D. K. (1996). The surface integrity of turned and ground hardened bearing steel. Wear, 196, 279-284.
Arsene, B., Gheorghe, C., Sarbu, F. A., Barbu, M., Cioca, L. I., Calefariu, G. (2021). MQL-assisted hard turning of AISI D2 steel with corn oil: analysis of surface roughness, tool wear, and manufacturing costs. Metals, 11, 2058.
Arshinov, V., Alekseev, G. (1970). Metal cutting theory and cutting tool design. Moscú: Editorial Mir.
Astakhov, V. P. (2004). The assessment of cutting tool wear. International Journal of Machine Tools and Manufacture, 44, 637-647.
Astakhov, V. P. (2006a). Effects of the cutting feed, depth of cut, and workpiece (bore) diameter on the tool wear rate. The International Journal of Advanced Manufacturing Technology, 34, 631-640.
Astakhov, V. P. (2006b). Tribology of metal cutting. 1st ed. London: Elsevier Ltd.
Astakhov, V. P. (2011). Machining of hard materials – definitions and industrial applications. In: Machining of Hard Materials. Ed. Davim, J. P. 1st ed. London: Springer, 1-32.
Boothroyd, G., Knight, W. A. (2006). Fundamentals of machining and machine tools. Boca Raton: CRC Press.
Branco, F. K., Delijaicov, S., Bordinassi, É. C., Bortolussi, R. (2018). Surface integrity analysis in the hard turning of cemented steel AISI 4317. Materials Research, 21(05), e20171032.
Brinksmeier, E., Meyer, D., Huesmann-Cordes, A. G., Hermann, C. (2015). Metalworking fluids mechanisms and performance, CIRP Annal - Manufacturing Technology, 65, 605-628.
Brinksmeier, E., Meyer, E., Huesmann-Cordes, A. G., Hermann, C. (2015). Metalworking fluids mechanisms and performance. CIRP Annals - Manufacturing Technology, 65, 605 628.
Callister, W. D., Rethwisch, D. G. (2014). Applications and processing of metal Alloys. In: Materials science and engineering: an introduction. 9th ed. New York: Jhon Wiley & Sons, 391-449.
Carou, D. (2013). Estudio experimental para determinar la influencia de la refrigeración/lubricación en la rugosidad superficial en el torneado intermitente a baja velocidad de piezas de magnesio. Tesis doctoral. Madrid: Universidad Nacional de Educación a Distancia.
Chinchanikar, S., Choudhury, S. K. (2014). Evaluation of chip-tool interface temperature: effect of tool coating and cutting parameters during turning hardened AISI 4340 steel. Procedia Materials Science, 6, 996-1005.
Çolak, O., Kurbanoğlu, C., Kayacan, M. C. (2007). Milling surface roughness prediction using evolutionary programming methods. Materials and Design, 28(2), 657-666.
Das, R. K., Sahoo, A. K., Mishra, P. C., Kumar, R., Panda, A. (2018). Comparative machinability performance of heat treated 4340 steel under dry and minimum quantity lubrication surroundings. Procedia Manufacturing, 20, 377-385.
Das, S. R., Panda, A., Dhupal, D. (2017). Experimental investigation of surface roughness, flank wear, chip morphology and cost estimation during machining of hardened AISI 4340 steel with coated carbide insert. Mechanics of Advanced Materials and Modern Processes, 3(9), 1-14.
Dhar, N., Kamruzzaman, M., Ahmed, M. (2006). Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of Materials Processing Technology, 172, 299-304.
Erdel, B. P. (2003). High-Speed Machining, Society of Manufacturing Engineers. Michigan: Dearborn.
Llanes, E. A., Falcon, E. B. (2019). Incidencia de la velocidad de avance, profundidad de corte y velocidad de husillo en la rugosidad superficial para puntas de ejes de vehículos. Tesis de Maestría. Quito: Universidad Internacional Sek.
Fitzpatrick, M. (2014). Single-purpose measuring tools, gages, and surface roughness. In: Machining and CNC technology. 3rd ed. New York: McGraw-Hill, 182-218.
Gosai, M., Bhavsar, S. N. (2016). Experimental study on temperature measurement in turning operation of hardened steel (EN36). Procedia Technology, 23, 311-318.
Groover, M. P. (2013). Material properties and product attributes. In: Fundamentals of modern Manufacturing. 5th ed. New York: John Wiley & Sons.
Grzesik, W. (2008). Machining of hard materials. In: Machining. fundamentals and recent advances. Ed. Davim, J. P. 1st ed. London: Springer, 97-126.
Grzesik, W. (2017). Heat in metal cutting. In: Advanced machining processes of metallic materials. 2nd ed. London: Elsevier, 163-182.
Grzesik, W. (2018). Prediction of surface topography in precision hard machining based on modelling of the generation mechanisms resulting from a variable feed rate. The International Journal of Advanced Manufacturing Technology, 94, 4115-4123.
Gunjal, S. U., Patil, N. G. (2018). Experimental investigations into turning of hardened AISI 4340 steel using vegetable based cutting fluids under minimum quantity lubrication. Procedia Manufacturing, 20, 18-23.
Hasbrouck, C. R., Hankey, A. S., Abrahams, R., Lynch, P. C. (2020). Sub-surface microstructural evolution and chip formation during turning of AF 9628 steel. Procedia Manufacturing, 48, 559-569.
Iqbal, A., Zhao, G., Cheok, Q., He, N., Nauman, M. (2022). Sustainable machining: tool life criterion based on work surface quality. Processes, 10(6), 1087.
Kant, G. (2016). Prediction and optimization of machining parameters for minimizing surface roughness and power consumption during turning of AISI 1045 steel. Tesis doctoral. Pilani: Birla Institute of Technology & Science.
Khan, P. L., Bhivsane, S. V. (2018). Experimental analysis and investigation of machining parameters in finish hard turning of AISI 4340 steel. Procedia Manufacturing, 20, 265-270.
Kıvak, T., Samtaş, G., Çiçek, A. (2012). Taguchi method based optimisation of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills. Measurement, 45(6), 1547-1557.
Klocke, F., Brinksmeier, E., Weinert, K. (2005). Capability profile of hard cutting and grinding processes. CIRP Annals, 54(2), 22-45.
Konig, W., Komandur, R., Tonshoff, H., Ackershott, G. (1984). Machining of hard materials. CIRP Annals, 33(2), 417-427.
Kumar, R., Kumar, A., Kumar, R., Panda, A., Chandra, P. (2018). Modelling of flank wear, surface roughness and cutting temperature in sustainable hard turning of AISI D2 steel. Procedia Manufacturing, 20, 406-413.
Kumar, S., Agarwal, S. (2017). Optimization of machining parameters in turning of AISI 4340 steel under cryogenic condition using Taguchi technique. Procedia CIRP, 63, 610-614.
Lazoglu, I., Buyukhatipoglu, K., Kratz, H., Klocke, F. (2006). Forces and temperatures in hard turning. Machining Science and Technology, 2, 157-179.
Lee, T.-H. (2007). An experimental and theoretical investigation for the machining of hardened alloy steels. Tesis doctoral. Seoul: Seoul National University of Technology.
Leith, D., Raynor, P. C., Boundy, M. G., Cooper, S. J. (1996). Performance of industrial equipment to collect coolant mist. American Industrial Hygiene Association Journal, 57(12), 1142-1148.
Mia, M., Dhar, N. (2016). Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method. International Journal of Advanced Manufacturing Technology, 88(1), 739-753.
Montgomery, D. C., Runger, G. C. (2018). Applied statistics and probability for engineers. 7th ed. Hoboken: Wiley.
Morales, Y., Zambrano, P. C., Pérez, R., Ávila, R., Hernández, L. W., Zamora, Y. (2014). Estudio experimental del desgaste del flanco en el torneado en seco de alta velocidad del acero AISI 316L. Revista Técnica de la Facultad de Ingeniería de la Universidad del Zulia, 37(3), 1-8.
Pal, A., Choudhury, S. K., Chinchanikar, S. (2014). Machinability assessment through experimental investigation during hard and soft turning of hardened steel. Procedia Materials Science, 6, 80-91.
Roy, S., Ghosh, A. (2014). High-speed turning of AISI 4140 steel by multi-layered TiN top-coated insert with minimum quantity lubrication technology and assessment of near tool-tip temperature using infrared thermography. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 228(9), 1058-1067.
Sahu, S. K., Mishra, P. C., Orra, K., Sahoo, A. K. (2014). Performance assessment in hard turning of AISI 1015 steel under spray impingement cooling and dry environment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(2), 251-265.
Salur, E., Kuntoğlu, M., Aslan, A., Pimenov, D. Y. (2021). The effects of MQL and dry environments on tool wear, cutting temperature, and power consumption during end milling of AISI 1040 steel. Metals, 11(11), 1674.
Sampaio, M. A., Machado, Á. R., Laurindo, C. A. H., Torres, R. D., Amorim, F. L. (2018). Influence of minimum quantity of lubrication (MQL) when turning hardened SAE 1045 steel: a comparison with dry machining. The International Journal of Advanced Manufacturing Technology, 98, 959-968.
Santhosh, A. J., Tura, A. D., Jiregna, I. T., Gemechu, W. F., Ashok, N., Ponnusamy, M. (2021). Optimization of CNC turning parameters using face centred CCD approach in RSM and ANN-genetic algorithm for AISI 4340 alloy steel. Results in Engineering, 11, 100251.
Shaikh, A., Shinde, A., Chinchanikar, S., Zagade, G., Pardeshi, S. (2021). Comparative assessment of hard turning under dry and minimum quantity lubrication. IOP Conference Series: Materials Science and Engineering, International Conference on Recent Advances in Mechanical Engineering and Nanomaterials (ICRAMEN 2021). Pune: IOP Publishing Ltd., 1206 012007.
Shihab, S. K., Khan, Z. A., Mohammad, A., Siddiquee, A. N. (2014). A review of turning of hard steels used in bearing and automotive applications. Production & Manufacturing Research, 2(1), 24-49.
Şirin, S., Sarıkaya, M., Yıldırım, Ç., Kıvak, T. (2021). Machinability performance of nickel alloy X-750 with SiAlON ceramic cutting tool under dry, MQL and hBN mixed nanofluid-MQL. Tribology International, 153, 106673.
Suresh, R., Basavarajappa, S., Gaitonde, V., Samuel, G. L. (2012). Machinability investigations on hardened AISI 4340 steel using coated carbide insert. International Journal of Refractory Metals and Hard Materials, 33, 75-86.
Taguchi, G., Chowdhury, S., Wu, Y. (2005). Taguchi’s quality engineering handbook. 1st ed. New Jersey: John Wiley & Sons.

Derechos de autor 2024 Luis Wilfredo Hernández González, Hiovanis Castillo-Pantoja, Hiovanis Castillo-Pantoja, Dagnier Antonio Curra-Sosa, Dagnier Antonio Curra-Sosa, Enrique Ernesto Zayas-Figueras, Enrique Ernesto Zayas-Figueras, Roberto Pérez-Rodríguez

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0