Ubicación y Profundidad de la Grieta de Tracción en Taludes con el Empleo de Modelos Numéricos

  • Johannes Enrique Briceño Balza Departamento de Vías, Escuela de Ingeniería Civil, Facultad de Ingeniería, Universidad de Los Andes. Mérida, Venezuela. C.P. 5101 https://orcid.org/0000-0002-1265-8788
  • Norly Thairis Belandria Rodriguez Grupo de Investigación en Geología Aplicada (GIGA), Escuela de Ingeniería Geológica, Facultad de Ingeniería, Universidad de Los Andes. Mérida, Venezuela. C.P. 5101 https://orcid.org/0000-0002-9485-0860
  • Francisco Manuel Leon Oviedo Laboratorio de Vibraciones Mecánicas, Escuela de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Los Andes. Mérida, Venezuela. C.P. 5101 https://orcid.org/0000-0001-7706-5740
Palabras clave: estabilidad de taludes, grieta de tracción, modelos numéricos, simulación, elementos finitos

Resumen

En la estabilidad de taludes, un factor importante a considerar es la presencia de grietas de tracción. Con los años, la estabilidad se ha analizado utilizando el método analítico de equilibrio límite y más recientemente con el uso de métodos numéricos. En investigaciones anteriores, la ubicación y/o la profundidad de la grieta, se fijaron previamente como un dato conocido. En esta investigación, utilizando el método de elementos finitos, el comportamiento de la superficie de rotura, se simuló con la presencia de grietas de tracción en suelos, considerando la influencia de las condiciones geométricas (inclinación del talud y altura), así; se determinaron entonces la ubicación y profundidad de la grieta de tracción. Finalmente, se concluye que se producen grietas de tracción en el caso de los suelos finos estudiados, a medida que la inclinación y la altura del talud aumentan, la distancia desde la base del talud a la grieta disminuye, la profundidad de la grieta aumenta y por consiguiente, el factor de seguridad disminuye, que resulta un factor determinante en la estabilidad del talud.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Francisco Manuel Leon Oviedo, Laboratorio de Vibraciones Mecánicas, Escuela de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Los Andes. Mérida, Venezuela. C.P. 5101

Dr. Francisco Manuel León Oviedo: Ph.D. in Mechanical Engineering 2002, and M.Sc. in Mechanical Engineering 1998, both from the University of South Florida (USF), Tampa, FL, USA.  M.Sc. in Maintenance Engineering in 1992, and Mechanical Engineer in 1989, both from University of Los Andes (ULA), Mérida, Venezuela. Currently he is Professor of the Technology and Design Department of the Mechanical Engineering School at ULA, Mérida, with 28 years of teaching experience (since 1991).  During these years, he has being Chief of the Mechanical Vibrations Lab., Chief of the Management and Production Chair, Director of the Mechanical Engineering School, Internships Coordinator, Dean´s office Coordinator, Dean (S), Member of the Faculty Council, and Member of the Evaluation Committee for Promotion of nineteen Faculty members. Recently, he was selected as Member of the Doctorate Committee Council of Engineering (2016- Present) at ULA. He has taught: Industrial Maintenance, Mechanical Vibrations, Numerical Methods, Production I, Strength of Materials, and Special Topics for undergraduate and for the Graduate Schools of Maintenance, Applied Mathematics, Biomedical, Structures, and Roads.  He is currently advising four Ph.D. Candidates. He was advisor of two Ph.D. Dissertations, and was advisor of seven M.Sc. Thesis and over twenty Undergraduate Projects. He has several research publications in Journals, and Conference Proceedings. He has worked on six grants Projects, and awarded as accredited researcher in Venezuelan´s government Programs for Research Promotion. Organizer and President of the Cimenics 2010 Congress, and Founder of the ASME Student Section at ULA. Committee member of EMSE2017, and EMSE2018. Associate Editor of the journals: Revista Politécnica. Escuela Politécnica de Ecuador, since September 2018, and Revista Técnica de Facultad de Ingeniería, Universidad del Zulia (LUZ), Venezuela, since January 2019.

Citas

Abdollahi, M., Vahedifard, F., Abed, M. et al. (2021). Effect of Tension Crack Formation on Active Earth Pressure Encountered in Unsaturated Retaining Wall Backfills. Journal of Geotechnical and Geoenvironmental Engineering, vol 147 Issue 2.
Akram, H Abd. (2014). Seismic displacement of geosynthetic-reinforced slopes subject to cracks. Civil Engineering Dept., College of Engineering, Tikrit University, Tikrit, Iraq, International symposium on geohazards and geomechanics. Conf. Series: Earth and Environmental Science 26 (2015) 012045. DOI: 10.1088/1755-1315/26/1/012045.
Belandria, N. (2015). Desarrollo de un método para el cálculo generalizado de estabilidad de taludes, basado en técnicas innovadoras del cálculo matemático y computacional. Tesis doctoral. Universidad de Los Andes, Venezuela.
Bishop, A. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, vol. 5, 7-17.
Chen, G., Tang, P., Huang, R. et al.(2021). Critical tension crack depth in rockslides that conform to the three-section mechanism. Landslides, vol 18, 79–88. DOI: 10.1007/s10346-020-01471-x.
Cheng, Mao., Xie, Cao. (2014). Investigation on the stability of slopes with cracks subjected to seismic effect, vol. 19, Bund. R.
Coats, D. (1981). Rock mechanics principles. Energy and resources, Canada, Monograph 874, Capitulo 6, Rock slopes, 6-52.
Cousins, B. (1980). Stability charts for simple earth slopes allowing for tension cracks. Proc. 3rd Australia-New Zealand Conference on geomechanics, Wellington, New Zealand,101–105
Dyson, A.P., Tolooiyan, A. (2018). Optimisation of strength reduction finite element method codes for slope stability analysis. Innov. Infrastruct. Solut. 3, 38. DOI:10.1007/s41062-018-0148-1.
Fellenius, W. (1936). Calculation of Stability of Earth Dams. Transactions, Second Congress, Large Dams, vol. 4, 445.
Janbu, N. (1954). Stability Analysis of Slopes with Dimensionless Parameters. Tesis doctoral. Cambridge, Massachussetts, Harvard University, 81.
Law, K., Lumb, P. (1978). A limited equilibrium analysis of progressive failure in the stability of slopes”. Canadian Geotechnical Journal, vol. 15, No. 2, 113–122.
Lian-Heng, Zhao., Xiao, Cheng., Yingbin, Zhang., Liang, Li., De-Jian, Li. (2016). Stability analysis of seismic slopes with cracks. Computers and Geotechnics, vol 77, 77–90.
Mehdipour, I., Ghazavi, M., Moayed, R. (2013). Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect. Geotextiles and Geomembranes, vol. 37, No. 4, 23–34, DOI: 10.1016/j.geotexmem.2013.01.001.
Morgenstern, N., Price, V. (1965). The analysis of stability of general slip surfaces. Geotechnique, vol. 15, 79-93.
Palmer, A., Rice, J. (1973). The growth of slip surfaces in the progressive failure of overconsolidated clay. Proceedings of the Royal Society of London. Series A332, 527-548.
Programa computacional Plaxis V.8.2 bidimensional , editado por R.B.J Brinkgreve Delft University of Technology & PLAXIS b.v. The Netherlands.
Ramírez, P., Alejano, L. (2014). Mecánica de Rocas, Fundamentos e Ingeniería de Taludes. 286-296.
Sengani, F., Mulenga, F.(2020). Application of limit equilibrium analysis and numerical modeling in a case of slope instability. Sustainability , 12(21), 8870, DOI:10.3390/su12218870.
Shariati, M., Fereidooni, D. (2021). Rock slope stability evaluation using kinematic and kinetic methods along the Kamyaran-Marivan road, west of Iran. J. Mt. Sci. 18, 779–793. DOI:10.1007/s11629-020-6438-z.
Shukla, SK., Khandelwal, S., Verma, VN., Sivakugan, N. (2009). Effect of surcharge on the stability of anchored rock slope with water filled tension crack under seismic loading condition. GeotechGeolEng, vol. 27, N° 4, 529–38.
Shuwei, Zhou. (2018). Adaptive phase field simulation of quasi-static crack propagation in rocks. Underground Space, (2018), DOI: 10.1016/j.undsp.2018.04.006.
Spencer, E. (1967). A method of analysis for stability of the embankment using parallel inter-slice forces. Geotechnique, vol. 17, 11-26.
Tang, L., Zhao, Z., Luo, Z., Sun, Y. (2019). What is the role of tensile cracks in cohesive slopes?. Journal of rock mechanics and geotechnical engineering, vol 11, 314-324. DOI: 10.1016/jrmge.2018.09.007.
Ucar, R. (1992). Determinación del mínimo factor de seguridad en taludes rocosos con grieta de tracción. XII Seminario Venezolano de Geotecnia, 156-166.
Utili, S. (2013). Investigation by limit analysis on the stability of slopes with cracks. Géotechnique, vol. 63, No. 2,140–154, DOI: 10.1680/geot.11.P.068.
Wei, Gao., Shuang, Dai., Ting, Xiao., Tianyang, He. (2017). Failure process of rock slopes with cracks based on the fracture mechanics method. Engeo, DOI:10.1016/j.enggeo.2017.10.020.
Yong-xin, Li., Xiao-li, Yang. (2016). Stability analysis of crack slope considering nonlinearity and water pressure”. KSCE Journal of Civil Engineering, 20(6):2289-2296 Copyright ⓒ2016 Korean Society of Civil Engineers, (2015). DOI: 10.1007/s12205-015-0197-3.
Zhang, L., Wang, X., Xia, T., Yang, B., Yu, B. (2021). Deformation Characteristics of Tianjiaba Landslide Induced by Surcharge. ISPRS International Journal of Geo-Information.10(4):221. DOI: 10.3390/ijgi10040221.
Publicado
2022-05-01
Cómo citar
Briceño Balza, J. E., Belandria Rodriguez, N. T. y Leon Oviedo, F. M. (2022) «Ubicación y Profundidad de la Grieta de Tracción en Taludes con el Empleo de Modelos Numéricos», Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 45(2), pp. 111-121. doi: 10.22209/rt.v45n2a04.