Rectenas para el Coechamiento de Energía de los Sistemas de Comunicaciones en RF: Una Revisión. / Rectennas for Energy Harvesting from RF Communication Systems: A Review.

Andry Carmelo Contreras Chacon, Maryory Urdaneta Herrera

Resumen


Resumen

El presente artículo tuvo como objetivo caracterizar el desempeño de las rectenas utilizadas en los sistemas de comunicaciones en radiofrecuencia, con la finalidad de identificar aspectos relevantes en las distintas etapas que conforman esta fuente de energía. En esta investigación, se realizó una revisión documental de artículos acerca de rectenas que recolectan energía de los sistemas de telefonía móvil, redes de área local inalámbrica (WLAN) y aplicaciones ISM. Los resultados muestran que la antena más empleada en estos sistemas ha sido la monopolo con parche rectangular. El rectificador más usado ha sido el doblador de voltaje, con el cual se ha obtenido una eficiencia de conversión RF-DC máxima de 93%. Adicionalmente, se obtuvo que el elemento de interconexión más utilizado ha sido el acoplador de impedancia de sección L convencional. La máxima eficiencia de conversión obtenida fue 87% para el sistema WLAN a 2,45 GHz. Se concluye que existe una variedad de criterios para el diseño de rectenas para una aplicación dada. Como futuras investigaciones se plantea establecer criterios particulares para cada aplicación que permitan obtener el mejor rendimiento posible y optimizar las etapas de las rectenas para alcanzar una mayor eficiencia de conversión y cosechar más energía.

Abstract

The purpose of this work was to characterize the performance of rectennas used on radiofrequency communication systems in order to identify relevant aspects in their different elements. In this research, a documental review of rectennas’ articles for mobile telephony, wireless local area networks (WLAN) and ISM applications was carried out. Results showed that the monopole with rectangular patch has been the most used antenna. The voltage doubler has been the most utilized rectifier, which has a maximum conversion efficiency of 93%. Additionally, conventional impedance matching of L-section has been the most used interconnection element. The highest maximum conversion efficiency obtained was 87% for WLAN at 2.45 GHz system. It was concluded that there is a wide variety of criteria to design rectennas for a determined application. Future research could be conducted to establish particular criteria for each application with the purpose of determining the configuration that has the best performance and to optimize each element of the rectenna in order to obtain a higher conversion efficiency and to harvest more energy.

 

https://doi.org/10.22209/rt.v43n2a05


Palabras clave


rectenas; cosechamiento de energía; sistemas de comunicaciones en RF. / rectennas; energy harvesting; rf communication systems.

Texto completo:

PDF XML

Referencias


Matin, M.: “Wireless Sensor Networks-Technology and protocols”, InTech, Rijeki, 2012.

Huang, X., Chen, Y., and Ao, S.: “Advances in communication systems and electrical engineering”, Springer, New York, 2008.

Bi, Q., Zysman, G. I., and Menkes, H.: “Wireless Mobile Communications at the Start of the 21st Century”. IEEE Communication Magazine, Vol. 39, N° 1, (2001) 110–116.

Sanou, B.: “ICT Facts & Figures”. International Telecommunication Union, Geneva, 2015.

Zhang, J., and Huang, Y.: “Rectennas for Wireless Energy Harvesting”. In: IEEE Student Conference on Research and Development (SCOReD), Kuala Lumpur (2016), 1–4.

Shoki, B. H.: “Issues and Initiatives for Practical Deployment of Wireless Power Transfer Technologies in Japan”. Proc. IEEE, Vol. 101, N° 6, (2013) 1312–1320.

Ahn, D., and Hong, S.: “A transmitter or a receiver consisting of two strongly-coupled resonators for enhanced resonant coupling in wireless power transfer”. IEEE Trans. Ind. Electron., Vol. 61, N° 3, (2013) 1193–1203.

Matias, R., Cunha, B., and Martins, R.: “Modeling inductive coupling for wireless power transfer to integrated circuits”. IEEE Wirel. Power Transf, Vol. 2, N° 1, (2013) 198–201.

Dai, J., and Ludois, D. C.: “A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications”. IEEE Trans. Power Electron., Vol. 30, N° 11, (2015) 6017–6029.

Song C. Song, Chiuk, K., Hongseok, K., Sunkyu, J., Young, I., and Kim, J.: “Structure of handheld resonant magnetic coupling charger (HH-RMCC) for electric vehicle considering electromagnetic field”. IEEE Wirel. Power Transf., Vol. 2013, (2013) 131–134.

Shinohara, N.: “Rectennas for microwave power transmission”. IEICE Electron. Express, Vol. 10, N° 21, (2013) 1–13.

Donchev, E., Pang, J., Gammon, P., Centeno, A., Xie, F., Petrov, P., Breeze, J., Ryan, M., Riley, D., and Alford, N.: “The rectenna device: From theory to practice (a review)”. MRS Energy Sustain. - A Rev. J., Vol. 1, (2014) 1–34.

Nasimuddin, “Microstrip antennas”: InTech, Rijeka, 2011.

Sorrentino R., and Bianchi, G.: “Microwave and RF engineering”, John Wiley & Sons ltd, Chichester, 2010.

Song, C., Huang, Y., Zhou, J., and Carter, P.: “Improved Ultra-Wideband Rectennas Using Hybrid Resistance Compression Technique”. IEEE Trans. Antennas Propag., Vol. 65, N° 4, (2017) 2057–2062.

Benayad A., and Tellache, M.: “A compact energy harvesting multiband rectenna based on metamaterial complementary split ring resonator antenna and modified hybrid junction ring rectifier”. Int. J. RF Microw. Comput. Aided Eng., Vol. 2019, (2019) 1–11.

Khemar, A., Kacha, A., Takhedmit, H., and Abib, G.: “Design and experiments of a dual-band rectenna for ambient RF energy harvesting in urban environments”. IET Microwaves, AntennasPropag., Vol. 12, N° 1, (2018) 49–55.

Shi, Y., Fan, Y., Li, Y., Yang, L., and Wang, M.: “An Efficient Broadband Slotted Rectenna for Wireless Power Transfer at LTE Band”. IEEE Trans. Antennas Propag., Vol. 67, N° 2, (2018) 814–822.

Takhedmit, H.: “Ambient RF Power Harvesting. Application to Remote Supply of a Batteryless Temperature Sensor”. In: IEEE International Smart Cities Conference (ISC2), Trento (2016), 1–4.

Nguyen, N., Bui, T., Le, A., Pham, A., Nguyen, T., Nguyen, C., Le, M.: “A Novel Wideband Circularly Polarized Antenna for RF Energy Harvesting in Wireless Sensor Nodes”. Int. J. Antennas Propag., Vol. 2018, (2018) 3–9.

ITU: “Measuring the Information. Society Report, vol. 1”, ITU Publications, Geneva, 2018.

Zeng, M., Li, Z., Andrenko, A., Zeng, Y., and Tan, H.: “A Compact Dual-Band Rectenna for GSM900 and GSM1800 Energy Harvesting”. Int. J. Antennas Propag., Vol. 2018, (2018) 1–10.

Zeng, M., Andrenko, A., Liu, X., Li, Z., Tan, H.: “A Compact Fractal Loop Rectenna for RF Energy Harvesting”. IEEE Antennas Wirel. Propag. Lett., Vol. 16, (2017) 2424–2427.

Okba, A., Takacs, A., and Aubert, H.: “Compact Rectennas for Ultra-Low-Power Wireless Transmission Applications”. IEEE Trans. Microw. Theory Tech., Vol. 67, N° 5, (2019) 1697–1707.

Chandravanshi S., and Akhtar, M.: “An efficient dual-band rectenna using symmetrical rectifying circuit and slotted monopole antenna array”. Int. J. RF Microw. Comput. Aided Eng., Vol. 2020 (2020), 1–15.

Contreras, A., Steinfeld, L., Siniscalchi, M., Schandy, J., and Rodríguez, B.: “A Rectenna as Energy Source for Wireless Sensor Nodes”. In 11st IEEE Latin American Symposium on Circuits and Systems (LASCAS), San José (2020), 1–4.

Nimo, A., Beckedahl, T., Ostertag, T., and Reindl, L.: “Analysis of Passive RF-DC Power Rectification and Harvesting Wireless RF Energy for Micro-watt Sensors”. AIMS Energy, Vol. 3, N° 2, (2015) 184–200.

Singh, M., Agrawal, S., and Parihar, M.: “Design of a rectenna system for GSM-900 band using novel broadside 2x1 array antenna”. IET J. Eng., Vol. 1, N° 1, (2017) 1–5.

Agrawal, S., Parihar, M. S., and Kondekar, P. N.: “Broadband Rectenna for Radio Frequency Energy Harvesting Application Broadband Rectenna for Radio Frequency Energy Harvesting Application”. IETE J. Res., Vol. 64, N° 3, (2018) 347–353.

Agrawal, S., Parihar, M., and Kondekar, P. N.: “A quad-band antenna for multi-band radio frequency energy harvesting circuit”. Int. J. Electron. Commun., Vol. 85, (2018) 99–107.

Asif, S. M., Iftikhar, A., Hansen, J. W., Khan, M., Ewert, D., and Braaten, B.: “A Novel RF-Powered Wireless Pacing via a rectenna-based Pacemaker and a Wearable Transmit-Antenna Array”. IEEE Access, Vol. 7, (2018) 1139–1148.

Baranov, A. A., Akbari, S., Bragar, A., and Karelin, A.: “Feasibility of RF Energy Harvesting for Wireless Gas Sensor Nodes”. Sensors Actuators A. Phys., Vol. 275, N° 1, (2018) 37–43.

Chandravanshi S., and Akhtar, M.: “Design of efficient rectifier using IDC and harmonic rejection filter in GSM/CDMA band for RF energy harvesting”. Microw. Opt. Technol. Lett., Vol. 59, N° 3, (2017) 681–686.

Ho, D., Kharrat, I., Vuong, Nguyen, Q., and Le, M.: “Dual-Band Rectenna for Ambient RF Energy Harvesting at GSM 900 MHz and 1800 MHz”. In IEEE International Conference on Sustainable Energy Technologies (ICSET) Dual-Band, Hanoi (2016), 306–310.

Lopez-yela A., and Segovia-Vargas, D.: “A Triple-Band Bow-Tie Rectenna for RF Energy Harvesting without Matching Network”. In IEEE Wireless Power Transfer Conference (WPTC), Taipei (2017), 1–4.

Scheeler R., and Korhummel, S.: “A Dual-Frequency Ultralow-Power Efficient 0.5-g Rectenna”. IEEE Microw. Mag., Vol. 15, N° 1, (2014) 109–114.

Sampe, J., Hidayah, N., Yunus, M., Yunas, J., and Pawi, A.: “Ultra-Low Power RF Energy Harvesting of 1.9GHz & 2.45GHz Narrow-Band Rectenna for Battery-Less Remote Control”. Int. J. Inf. Electron. Eng., Vol. 7, N° 3, (2017) 118–122.

Malisuwan, S., Tiamnara, N., and Suriyakrai, N.: “Design of Antennas for a Rectenna System of Wireless Power Transfer in the LTE/WLAN Frequency Band”. J. Clean Energy Technol., Vol. 5, N° 1, (2017) 42–46.

Shi, Y., Fan, Y., Jing, J., Yang, L., Li, Y., and Wang, M.: “An efficient fractal rectenna for RF energy harvest at 2.45 GHz ISM band”. Int. J. RF Microw. Comput. Eng., Vol. 28, N° 9, (2018) 1–8.

Ahmed, S., Zakaria, Z., Husain, M. N., and Alhegazi, A.: “Design of Rectifying Circuit and Harmonic Suppression Antenna for RF Energy Harvesting”. J. Telecommun. Electron. Comput. Eng., Vol. 9, N° 2, (2017) 63–67.

Ahmed, S., Zakaria, Z., Husain, Ibrahim, I., and Alhegazi, A.: “Efficient feeding geometries for rectenna design at 2.45 GHz”. Electron. Lett., Vol. 53, N° 24, (2017) 24–25.

Chen Y., and Chiu, C.: “Maximum Achievable Power Conversion Efficiency Obtained through an Optimized Rectenna Structure for RF Energy Harvesting”. IEEE Trans. Antennas Propag., Vol. 65, N° 5, (2017) 2305-2317.

Chuma, E. L., De Torre, L., Iano, Y., and Roger, L.: “A Compact Fractal Structure Based Rectenna with the Rectifier Circuit Integrated”. In IEEE Int. Symposium on Antennas and Propag. & USNC/URSI National Radio Science Meeting, San Diego (2017), 1607–1608.

Chuma, E., Rodriguez, L., Iano, Y., Bravo, L., and Sanchez, M.: “Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area”. IET Microwaves, Antennas Propag. Res., Vol. 12, N° 2, (2018) 173–178.

Contreras, A., Rodríguez, B., Steinfeld, L., Schandy, J., and Siniscalchi, M.: “Design of a Rectenna for Energy Harvesting on Wi-Fi at 2.45 GHz”. In 2nd Argentine Conference on Electronics (CAE), Buenos Aires (2020), 63–68.

Deng, C., Huang, K., Wu, Y., and Xia, M.: “Analysis of RF-DC Conversion Efficiency of Composite Multi-Antenna Rectifiers for Wireless Power Transfer”. KSII Trans. Internet Inf. Syst., Vol. 11, N° 10, (2017) 5116–5131.

Fan, S., Zhao, Y., Gou, W., Song, C., Huang, Y., Zhou, J., Geng, L.: “A High-Efficiency Radio Frequency Rectifier-Booster Regulator for Ambient WLAN Energy Harvesting Applications”. In IEEE MTT-S International Wireless Symposium, Chengdu (2018), 1–3.

Kang, Z., Lin, X., Tang, C., Mei, P., Liu, W., and Fan, Y.: “2.45-GHz wideband harmonic rejection rectenna for wireless power transfer”. Int. J. Microw. Wirel. Technol., Vol. 9, N° 5, (2017) 977–983.

Kumar D., and Chaudhary, K.: “High Efficiency Harmonic Harvester Rectenna for Energy Storage Application”. Int. J. Power Electron. Drive Syst., Vol. 9, N° 1, (2018) 252–259.

Lee, D., Lee, S., Hwang, I., and Lee, W.: “Hybrid Power Combining Rectenna Array for Wide Incident Angle Coverage in RF Energy Transfer”. IEEE Trans. Microw. Theory Tech., Vol. 65, N° 9, (2017) 3409–3418.

Li, X., Yang, L., and Huang, L.: “Novel Design of 2.45-GHz Rectenna Element and Array for Wireless Power Transmission”. IEEE Access, Vol. 7, (2019) 28356–28362.

Mansour, M., Takiguchi, O., Inoi, T., and Kanaya, H.: “Experimental Investigation of Wireless Energy Harvesting with a Bluetooth Low Energy Sensing Unit”. In International Conference on Electronics Packaging and iMAPS, Mie (2018), 189–193.

Mansour, M., Polozec, X., and Kanaya, H.: “Enhanced Broadband RF Differential Rectifier Integrated with Archimedean Spiral Antenna for Wireless Energy Harvesting Applications”. Sensors, Vol. 19, N° 655, (2019) 1–13.

Meor, M., Zakaria, Z., Husain, M. N., and Misran, M. H.: “A High-Efficiency Rectenna Design at 2.45 GHz for RF Energy Scavenging”. J. Telecommun. Electron. Comput. Eng., Vol. 9, N° 3, (2017) 151–154.

Naresh, B., Singh, V., and Bhargavi, V.: “Dual band RF Energy Harvester for Wearable Electronic Technology”. In 3rd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, Chennai (2017), 3–6.

Peter, T., Rahman, T., Cheung, S., Nilavalan, R., Abutarboush, H., and Vilches, A.: “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting”. IEEE Trans. Antennas Propag., Vol. 62, N° 4, (2014) 1844–1853.

Shi, Y., Jing, J., Fan, Y., Yang, L., and Wang, M.: “A novel compact broadband rectenna for ambient RF energy harvesting”. Int. J. Electron. Commun., Vol. 95, (2018) 264–270.

Wang, M., Yang, L., Fan, Y., Shen, M., Li, Y., and Shi, Y.: “A compact omnidirectional dual-circinal rectenna for 2.45 GHz wireless power transfer”. Int. J. RF Microwave. Comput. Aided Eng., Vol. 2018, (2018) 1–7.

Zhang, Y., Shen, S., Chiu, C., and Murch, R.: “Hybrid RF-Solar Energy Harvesting Systems Utilizing Transparent Multiport Micromeshed Antennas”. IEEE Trans. Microw. Theory Tech., Vol. 67, N° 11, (2019) 4534–4546.

Ji, S., Qi, H., and Zhang, H.: “Rectenna Serves 2.45-GHz”. Wireless Power Transmission. Microw. RF, Vol. 2014, N° September, (2014) 102–105.

Adami, S., Proynov, P., Hilton, G., Yang, G., Zhang, C., Beeby, S., Craddock, I., Stark, B: “A Flexible 2.45-GHz Power Harvesting Wristband With Net System Output From −24.3 dBm of RF Power”. IEEE Trans. Microw. Theory Tech., Vol. 66, N° 1, (2018) 380–395.

Lu, P., Yang, Y., Cheng, F., and Wu, L.: “Frequency-Reconfigurable Rectenna With an Adaptive Matching Stub for Microwave Power Transmission”. IEEE Antennas Wirel. Propag. Lett., Vol. 18, N° 5, (2019) 956–960.

Ghosh S., and Chakrabarty, A.: “Green Energy Harvesting from Ambient RF Radiation”. In International Conference on Microelectronics, Computing and Communications (MicroCom), Durgapur (2016), 1–4.

Indumathi G., and Karthika, K.: “Rectenna Design for RF Energy Harvesting in Wireless Sensor Networks”. In IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore (2015), 9–12.

Khemar, A., Kacha, A., Takhedmit, H., and Abib, G.: “Design and experiments of a 3G-band rectenna for radio frequency energy harvesting”. Rev. Roum. Sci. Techn.–Électrotechn. Énerg., Vol. 62, N° 1, (2017) 82–86.

Palazzi, V., Hester, J., Bito, J., Alimenti, F., Kalialakis, C., Collado, A., Mezzanotte, P., Georgiadis, A., Roselli, L., Tentzeris, M: “A Novel Ultra-Lightweight Multiband Rectenna on Paper for RF Energy Harvesting in the Next Generation LTE Bands”. IEEE Trans. Microw. Theory Tech., Vol. 66, N° 1, (2018) 366–379.

Shen, S., Chiu, C., and Murch, R.: “A Broadband L-Probe Microstrip Patch Rectenna for Ambient RF Energy Harvesting”. In Int. Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego (2017), 2037–2038.

Song, S., Su, M., Liu, Y., Li, S., and Tang, B.: “A Novel Broadband Rectenna for Energy Harvesting”. In International Symposium on Antennas and Propagation (ISAP), Okinawa (2016), 1082–1083.

Tissier J., and Latrach, M.: “Broadband Rectenna for Ambient RF Energy Harvesting Applications”. In 32nd URSI GASS, Montreal (2017), 2–4.

Georgiadis, A., Collado, A., and Niotaki, K.: “Rectenna Design and Signal Optimization for Electromagnetic Energy Harvesting and Wireless Power Transfer”. IEICE Trans. Electron., Vol. E98.C, N° 7, (2015) 608–612.

Shen, S., Chiu, C., and Murch, R. D.: “A Dual-Port Triple-Band L-Probe Microstrip Patch Rectenna for Ambient RF Energy Harvesting”. IEEE Antennas Wirel. Propag. Lett., Vol. 16, (2017) 3071–3074.

Singh, B., Ghosh, S., and Chakrabarti, S.: “Design Optimization and Implementation of Multiband Rectenna for Efficient Radio Frequency Energy Harvesting”. In IEEE International Conference on Industrial and Information Systems, Peradeniya (2017), 1–6.

Abdeltawab A. M., and Khattab, A.: “Efficient Multi-Band Energy Harvesting Circuit for Wireless Sensor Nodes”. In Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC), Cairo (2016), 75–78.

Chen Y., and Chiu, C.: “Characterization of the Lossyness of Matching Networks for RF Energy-Harvesting Rectennas”. In 11th European Conference on Antennas and Propagation (EUCAP), Paris (2017), 2053–2056.

Elsheakh, D. N.: “Broadband dual linear polarized (DLP antenna array for energy harvesting system”. Int. J. Microw. Wirel. Technol., Vol. 2019, (2019) 1–7.

Mitani, T., Kawashima, S., and Nishimura, T.: “Analysis of Voltage Doubler Behavior of 2.45-GHz Voltage Doubler-Type Rectenna”. IEEE Trans. Microw. Theory Tech., Vol. 65, N° 4, (2017) 1051–1057.

Okba, A., Takacs, A., and Aubert, H.: “900 MHz Miniaturized Rectenna”. In IEEE Wireless Power Transfer Conference (WPTC), Montreal (2018), 1–4.

Contreras, A., y Briceño, M.: “Propuesta de una antena para la medición de campos electromagnéticos en las bandas L y S de microondas”. In XIII Spanish-Portuguese Conference on Electrical Engineering, Valencia (2013), 1–5.

Eid, A., Costantine, J., Tawk, Y., Ramadan, A., Abdallah, M., Elhajj, R., Awad, R., Kasbah, I.: “An efficient RF energy harvesting system”. In 11th European Conference on Antennas and Propagation (EUCAP), Paris (2017), 896–899.

Ghosh, S.: “Design and testing of rectifying antenna for RF energy scavenging in GSM 900 band”. Int. J. Comput. Appl., Vol. 39, N° 1, (2017) 36–44.

Alex-Amor, A., Padilla, P., Fernandez, J., and Sierra-Castañer, M.: “A miniaturized ultrawideband Archimedean spiral antenna for low-power sensor applications in energy harvesting”. Microw. Opt. Technol. Lett., Vol. 2018, N° May, (2018) 1–6.

Randa, M., Maha, A., Menna, A., Farag, M., Ahmed, E., Hammad, H., and Abdel-hamid, A.: “A Foldable Textile-based Broadband Archimedean Spiral Rectenna for RF Energy Harvesting”. In 16th Mediterranean Microwave Symposium, Abu Dhabi (2016), 1–4.

Visser, H. J.: “Miniature Rectenna Design”. In International Applied Computational Electromagnetics Society Symposium - Italy (ACES), Firenze (2017), 1–2.

Salsabila S., and Munir, A.: “1.8GHz Printed Bow-Tie Dipole Rectenna with Voltage Quadrupler for RF Energy Harvesting”. In Proc. IEEE Region 10 Conference (TENCON), Malaysia (2017), 2739–2742.

Amir, N., Hamzah, S., Ramli, K., Mohd, S., Shamian, M., Adon, N., and Noordini, N.: “A 2×1 Microstrip Patch Array Rectenna with Harmonic Suppression Capability for Energy Harvesting Application”. Comput. Sci. Technol., Vol. 603, (2020) 373–382.

Trad, J. J., Zeb, B. A., Esselle, K. P., and Afzal, M. U.: “Preliminary Investigations into a Simple and Effective Rectenna for RF Energy Harvesting”. In IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego (2017), 1095–1096.

Deepa S. N., and Swarupa, B.: “RF Energy Harvesting Using 900MHz of Mobile Signal Frequency to Charging the Mobile Battery”. In IEEE International Conference on Innovations in Green Energy and Healthcare Technologies, Incheon (2017), 1–5.

Liu, R., Wang, X., Nie, D., Wang, L., Wang, M., Zheng, H., and Li, E.: “Metasurface: Enhancing gain of antenna and energy harvesting system design”. Int. J. RF Microw. Comput. Aided Eng., Vol. 2019, (2019) 1–11.

Mathur, M., Agrawal, A., Singh, G., and Bhatnagar, S. K.: “A Compact Coplanar Waveguide Fed Wideband Monopole Antenna for RF Energy Harvesting Applications”. Prog. Electromagn. Res. M, Vol. 63, (2018) 175–184.

Mishra, S., Varavadekar, J., and Haldankar, S.: “Design of Rectenna for Energy Harvesting in ISM Band”. In International Conference on Electronics, Communication and Aerospace Technology, Coimbatore (2017), 359–362.

Partal, H. P., and Partal, S. Z.: “Design and Implementation of a RF Energy Harvesting Module with DC Power Control”. In 22nd International Microwave and Radar Conference (MIKON), Poznan (2018), 33–36.

Partal, H. P., Belen, M. A., and Partal, S.: “Design and realization of an ultra-low power sensing RF energy harvesting module with its RF and DC sub-components”. Int. J. RF Microw. Comput. Aided Eng., Vol. 2019, (2019) 1–12.

Shen, S., Chiu, C., and Murch, R. D.: “Optimization of 2.45-GHz Pixel Rectenna for Wireless Power Transmission using Mixed Integer Linear Programming”. In IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego (2017), 351–352.

Singh, N., Kanaujia, B., Beg, M., Kumar, S., and Khan, T.: “A Dual Polarized Multiband Rectenna for RF Energy Harvesting”. Int. J. Electron. Commun., Vol. 93, (2018) 123–131.

Sun H., and Geyi, W.: “A New Rectenna Using Beamwidth-Enhanced Antenna Array for RF Power Harvesting Applications”. Antennas Wirel. Propag. Lett., Vol. 16, (2016) 1451–1454.

Aljaloud K., and Tong, K.: “A Compact Rectenna Using Split Ring Resonator for Energy Harvesting”. In International Workshop on Electromagnetics: Applications and Student Innovation Competition, London (2017), 164–165.

Bjorkqvist, O., Kolitsidas, C. I., Dahlberg, O., Silver, G., and Mattsson, M.: “A Novel Efficient Multiple Input Single Output RF Energy Harvesting Rectification Scheme”. In IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego (2017), 1605–1606.

Lee, D., Khang, S., Chae, S., and Yu, J.: “Dual linear polarized cavity- backed patch rectenna with DC power management network for optimized wireless RF power transfer”. Microw. Opt. Technol. Lett., Vol. 60, N° 3, (2018) 713–717.

Mattsson, M., Kolitsidas, C., Silver, G., Bj, O., Dahlberg, O., and Jonsson, B.: “A high gain Dual-Polarised Differential Rectenna for RF Energy Harvesting”. In IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego (2017), 1609–1610.

Sennouni, M., Zbitou, J., Abboud, B., Tribak, A., and Latrach, M.: “Efficient rectenna design incorporating new circularly polarized antenna array for wireless power transmission at 2.45GHz”. International Renewable and Sustainable Energy Conference, Ouarzazate (2014), 577–581.

Sennouni, M. A., Zbitou, J., and Abboud, B.: “Improved Circularly Polarized Rectenna Design for Microwave Power Transmission at 2.45GHz”. In International Renewable and Sustainable Energy Conference (IRSEC), Ouarzazate (2014), 1–5.

Huang, Y., Shinohara, N., and Toromura, H.: “A Wideband Rectenna for 2.4 GHz-band RF Energy Harvesting”. In IEEE Wireless Power Transfer Conference, Aveiro (2016), 1–3.

Naqvi S. A., and Khan, M.: “Design of a miniaturized frequency reconfigurable antenna for rectenna in WiMAX and ISM frequency bands”. Microw. Opt. Technol. Lett., Vol. 60, N° 2, (2018) 325–330.

Gangwar D., and Yadava, R.: “Design and analysis of a pentagonal rectenna”. In Int. Conference on Signal Processing and Integrated Networks, Noida (2014), 654–658.

Contreras, A., y Urdaneta, M.: “Antenas de banda ultra ancha para sistemas de comunicaciones en las bandas de microondas: Una revisión”. Rev. Ing. UC, Vol. 25, N° 2, (2018) 134–148.

Anuroop, Gangwar, D., and Yadava, R.: “Design and analysis of a pentagonal rectenna”. In Int. Conference on Signal Processing and Integrated Networks, Noida (2014), 654–658.

Shahabuddin, A. A., Shalu, P. D., and Akter, N.: “Optimized Process Design of RF Energy Harvesting Circuit for Low Power Devices”. Int. J. Appl. Eng. Res., Vol. 13, N° 2, (2018) 849–854.

Huang, Y., Shinohara, N., and Mitani, T.: “A Constant Efficiency of Rectifying Circuit in an Extremely Wide Load Range”. IEEE Trans. Microw. Theory Tech., Vol. 62, N° 4, (2014) 986–993.

Kundu, P., Acharjee, J., and Mandal, K.: “Design of an Efficient Rectifier Circuit for RF Energy Harvesting System”. Int. J. Adv. Eng. Manag., Vol. 2, N° 4, (2017) 94–97.

Rengalakshmi P., and Brinda, R.: “Rectifier for RF Energy Harvesting”. Int. J. Comput. Appl., Vol. 143, N° 10, (2016) 14–17.

Zulkifli, F., Leza, Y., Basari, and Rahardjo, E.: “Design of rectifier for rectenna application”. In Asia-Pacific Microwave Conference (APMC), Nanjing (2015), 7–9.

Hu, Y., Xu, H., Sun, H., and Sun, S.: “A High-Gain Rectenna Based on Grid-Array Antenna for RF Power Harvesting Applications”. In 10th Global Symposium on Millimeter-Waves, Hong Kong (2017), 161–162.

Ababneh, M. M., Perez, S., and Thomas, S.: “Optimized power management circuit for RF energy harvesting system”. In IEEE 18th Wireless and Microwave Technology Conference (WAMICON), Cocoa beach (2017), 1–4.






Universidad del Zulia /Venezuela/ Revista Técnica de la Facultad de Ingeniería/ revistatecnica@gmail.com /

p-ISSN: 0254-0770 / e-ISSN: 2477-9377 

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0 Unported.