Study of the leaching potential in a soil and its depuration capacity: perspectives in a landfill selection. / Estudio del potencial de lixiviación de un suelo y su capacidad de depuración: perspectivas en la selección de un relleno sanitario

Jhon Narvaez, Juan García, Anderson Rodriguez, José Cardona, Francisco Campillo, Diana Urrea

Resumen


Abstract

Many differrent solid wastes are deposited in landfills which may lead to leaching processes with groundwater pollution implications. Complex fractions of organic pollutants may transfer from the soil with multiplex physicochemical interactions which reduce the final soil-borne. In this paper, we study the potential removal of a dye and the potential of water infiltration in each layer of a soil. The results show a removal >98% in the complete profile and in the silty layer (SL) in which more infiltration was found. Therefore, organic fraction in the SL and even more interaction with the aluminum and silicates present, may reduce the dye by physicochemical interaction with log Koc properties. Also, more infiltration in SL indicates a strong interaction between dissolve analytes and soil due to despite a large amount of water cross the silt, low infiltered levels is presented. Finally, pH slightly acid from 4.5 in the sample was increased to 6.7 which indicates basic condition for neutralization, while conductivity was reduced even to values presented in tap water due to ionic exchange capacity by the soil. A preliminary conclusion indicates that removal of the first layer in a landfill reduces the capacity of pollutants removal in soils and, therefore, low physicochemical interactions may lead to the leaching of pollutants to waterbodies. However, further experiments are needed to strengthen this study.

Resumen

Muchos residuos sólidos son depositados en rellenos sanitarios, lo que puede conducir a procesos de lixiviación con implicaciones de contaminación del agua subterránea. Las fracciones complejas de contaminantes orgánicos pueden transferirse desde el suelo con una interacción fisicoquímica que reduce su paso final al agua. En este trabajo, se evaluó la eliminación de un colorante y el potencial de la infiltración del agua en cada estrato de un suelo. Los resultados muestran una eliminación > 98% en el perfil completo del suelo y en el estrato limoso (SL) en el que se encontró más infiltración. Por lo tanto, la fracción orgánica en el SL y la interacción con el aluminio y lossilicatos presentes, pueden reducir el colorante por interacciones fisicoquímicas con propiedades de log Koc. Además, una mayor infiltración en SL indica una fuerte interacción entre el colorante y el suelo debido a que, aunque una gran cantidad de agua atraviesa los limos, se presentan bajos niveles infiltrados del colorante. Finalmente, el pH ligeramente ácido de 4,5 en la muestra se incrementó a 6,7 lo que indica una condición básica para la neutralización, mientras que la conductividad se redujo incluso a los valores presentados en el agua del grifo debido a la capacidad de intercambio iónico del suelo. Una conclusión preliminar muestra que la eliminación del primer estrato en un relleno sanitario reduce la capacidad de eliminación del suelo y, por lo tanto, pocas interacciones fisicoquímicas pueden llevar a la lixiviación de contaminantes a cuerpos de agua. Sin embargo, deben llevarse a cabo más estudios en el futuro.

 

https://doi.org/10.22209/rt.v43n2a04


Palabras clave


soil layer; landfill; leaching processes; physicochemical interactions; water infiltration potential. / estrato del suelo, relleno sanitario, procesos de lixiviación, interacciones fisicoquímicas, potencial de infiltración del agua.

Texto completo:

PDF XML

Referencias


F. Calvo, B. Moreno, M. Zamorano, and M. Szanto, “Environmental diagnosis methodology for municipal waste landfills,” Waste Manag., Vol. 25, (2005) 768–779.

I. Mubarak, R. Angulo-jaramillo, J. Claude, P. Ruelle, M. Khaledian, and M. Vauclin, “Spatial analysis of soil surface hydraulic properties: Is infiltration method dependent?” Agric. Water Manag., Vol. 97, N°. 10, (2010) 1517–1526.

D. Hillel, Environmental soil physics: Fundamentals, applications, and environmental considerations. Amberst Massachusetts: Elsevier, 1998.

L. Tiruta-barna, A. Imyim, and R. Barna, “Long-term prediction of the leaching behavior of pollutants from solidified wastes,” Adv. Environ. Res., Vol. 8, N°. 03, (2004) 697–711.

A. T. Yeung, “Coupled Flow Equations for Water, Electricity and Ionic Contaminants through Clayey Soils under Hydraulic, Electrical and Chemical Gradients,” J. Non-Equilibrium Thermodyn., Vol. 15, N°. 3, (1990) 247–267.

B. K. G. Theng and G. F. Walker, “Interactions of Clay Minerals with Organic Monomers,” Isr. J. Chem., Vol. 8, N°. 3, (1970) 417–424.

Z. Han, H. Ma, G. Shi, L. He, L. Wei, and Q. Shi, “Science of the Total Environment A review of groundwater contamination near municipal solid waste landfill sites in China,” no. 1, 2016.

Y. Avnimelech, “Leaching of Pollutants from Sanitary Landfill Models” Journal (Water Pollution Control Federation)., Vol. 51, N°. 11, (1979) 2705–2716.

H. Yan, I. T. Cousins, C. Zhang, and Q. Zhou, “Perfluoroalkyl acids in municipal landfill leachates from China: Occurrence, fate during leachate treatment and potential impact on groundwater,” Sci. Total Environ., Vol. 524–525, (2015) 23–31.

E. S. P. B. V, Z. Gerstl, B. Yaron, R. Chemistry, and T. V. Centre, “Kerosene is a petroleum product characterized by low viscosity and medium volatility in comparison with heavy and residual fuels. It is used for wick-fed illumination, spark ignition engines (mainly in agriculture), and aviation gas turbines Goodger),” J. Contam. Hydrol., Vol. 5, N°. 4, (1990) 375–385.

J. Zhan et al., “A simple method for the determination of organochlorine pollutants and the enantiomers in oil seeds based on matrix solid-phase dispersion A simple, rapid and effective method was developed based on matrix solid-phase,” FOOD Chem., Vol. 194, (2015) 319–324.

R. E. Majors, “High Performance Liquid Chromatography on Small Particle Silica Gel,” Anal. Chem., vol. 44, N°. 11, (1972) 1722–1726.

E. Loffredo and N. Senesi, “Fate of anthropogenic organic pollutants in soils with emphasis on adsorption/desorption processes of endocrine disruptor compounds,” Pure Appl. Chem., Vol. 78, N°. 5, (2006) 947–961.

G. Britain, “QSAR modelling of soil sorption. Improvements and systematics of log Koc vs log Kow correlations,” Chemosphere, Vol. 31, N°. 95, (1995) 4489–4514.

J. Kukkonen and J. Pellinen, “Binding of organic xenobiotics to dissolved organic macromolecules: comparison of analytical methods,” Sci. Total Environ., Vol. 152, (1994) 19–29.

J. F. Narváez, J. A. Palacio, and F. J. Molina, “Environmental persistence of pesticides and their ecotoxicity: A review of natural degradation processes,” Gestion y Ambiente., Vol. 15, N°. 3, (2012) 27–38.

S. A. Sassman and L. S. Lee, “Sorption and degradation in soils of veterinary ionophore antibiotics: Monensin and lasalocid,” Environ. Toxicol. Chem., Vol. 26, N°. 8, (2007) 1614–1621.

H. Atabey, H. Sari, and F. N. Al-Obaidi, “Protonation equilibria of carminic acid and stability constants of its complexes with some divalent metal ions in aqueous solution,” J. Solution Chem., Vol. 41, N°. 5, (2012) 793–803.

H. Chen, B. Gao, H. Li, and L. Q. Ma, “Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media,” J. Contam. Hydrol., vol. 126, N°. 1–2, (2011) 29–36.

D. Guillermin et al., “Dyes and Pigments New pigments based on carminic acid and smectites: A molecular investigation,” Dye. Pigment., Vol. 160, (2019) 971–982.

M. Osako, Y. Kim, and S. Sakai, “Leaching of brominated flame retardants in leachate from landfills in Japan,” Chemosphere., vol. 57, (2006) 1571–1579.






Universidad del Zulia /Venezuela/ Revista Técnica de la Facultad de Ingeniería/ revistatecnica@gmail.com /

p-ISSN: 0254-0770 / e-ISSN: 2477-9377 

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0 Unported.