Predicción del contenido superficial de citral en micropartículas mediante espectroscopía NIR y regresión por mínimos cuadrados parciales

  • I Yoplac Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas. Chachapoyas, Perú. Escuela de Postgrado, Programa Doctoral en Ciencia de Alimentos, Universidad Nacional Agraria La Molina, Perú.
  • H Avila-George Centro Universitario de los Valles, Universidad de Guadalajara. Ameca, Jalisco 46600, México.
  • L Vargas Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Perú.
  • P Robert Dpto. Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 133, Santiago, Chile.
  • W Castro Facultad de Ingeniería, Universidad privada del Norte, Cajamarca, 06001, Perú.
Palabras clave: Absorbancia, Eficiencia de encapsulación, Microencapsulación, Perfil espectral, Reflectancia.

Resumen

En este estudio se evaluó la espectroscopía NIR y la regresión de mínimos cuadrados parciales (PLSR - partial least square regression) en la predicción del contenido superficial de citral (SC- superficial de citral) en micropartículas. Para
este propósito, se prepararon muestras de micropartículas con diferentes niveles de SC variando la relación citral: dextrina (Ct:Dx) en la solución (1:5 y 1:20), y la temperatura del aire de ingreso (TAI) al secador por atomización (120 y 200 °C) durante el secado, obteniendo 12 tratamientos. El contenido SC se midió por cromatografía de gases. Luego, cada tratamiento se dividió en seis partes, cuatro para modelado y dos para validación, obteniendo 72 partes de las cuales su perfil espectral de absorbancia (1100 y 2500 nm), fue extraído y pretratado. Posteriormente, se aplicó el método PLSR para modelar la relación entre los perfiles espectrales y los valores de SC. Se obtuvieron modelos con el espectro completo de onda y modelos optimizados, con las longitudes de onda relevantes. Los resultados obtenidos con el modelo PLSR optimizado mostraron valores de R2 superiores a 0,89 y RMSEC menores de 4,86x10-15. Por tanto; el método NIR – PLSR mostró potencialidades para la determinación de citral en microcápsulas.

Descargas

La descarga de datos todavía no está disponible.

Citas

Campelo P.H., do Carmo E.L., Zacarias R.D., Yoshida

M.I., Ferraz V.P., de Barros Fernandes R.V., Botrel

D.A. and Borges S.V.. Effect of dextrose equivalent on

physical and chemical properties of lime essential

oil microparticles. Ind Crops Prod., Vol. 102, (2017)

–114.

Maswal M. and Dar A.A. Formulation challenges in

encapsulation and delivery of citral for improved

food quality. Food Hydrocoll., Vol. 37, (2014) 182–

Fancello F., Petretto G.L., Zara S., Sanna M.L., Addis

R., Maldini M., Foddai, M., Rourke J.P., Chessa M. and

Pintore, G. Chemical characterization, antioxidant

capacity and antimicrobial activity against food

related microorganisms of Citrus limon var. pompia

leaf essential oil. LWT - Food Sci Technol., Vol. 69,

(2016) 579–585.

Lu W.C., Huang D.W., Wang C.C.R., Yeh C.H., Tsai J.C.,

Huang Y.T. and Li P.H. Preparation, characterization,

and antimicrobial activity of nanoemulsions

incorporating citral essential oil. J Food Drug Anal.,

Vol. 26, N°. 1, (2018) 82–89.

Saddiq A.A. and Khayyat S.A. Chemical and

antimicrobial studies of monoterpene: Citral. Pestic

Biochem Physiol., Vol. 98, N°. 1, (2010) 89–93.

Yang Y., Cui S., Gong J., Miller S.S., Wang Q. and Hua Y.

Stability of citral in oil-in-water emulsions protected

by a soy protein-polysaccharide Maillard reaction

product. Food Res Int., Vol. 69, (2015) 357–363.

Botrel D.A., de Barros Fernandes R.V. and Borges

S.V. Chapter 12: Microencapsulation of Essential

Oils Using Spray Drying Technology. In: L. Sagis

(ed), Microencapsulation and Microspheres for

Food Applications. Academic Press, San Diego, USA,

(2015), 235–251.

García P., Vega J., Jimenez P., Santos J. and Robert P.

Alpha-tocopherol microspheres with cross-linked

and acetylated inulin and their release profile in a hydrophilic model. Eur J Lipid Sci Technol., Vol. 115,

N° 7, (2013) 811–819.

Chang C., Varankovich N. and Nickerson M.T.

Microencapsulation of canola oil by lentil protein

isolate-based wall materials. Food Chem., Vol. 212,

(2016) 264–273.

Sharif H.R., Goff H.D., Majeed H., Shamoon M., Liu

F., Nsor-Atindana J, Haider, J., Liang R. and Zhong

F. Physicochemical properties of β-carotene and

eugenol co-encapsulated flax seed oil powders using

OSA starches as wall material. Food Hydrocoll., Vol.

, (2017) 274–283.

Timilsena Y.P., Adhikari R., Barrow C.J. and Adhikari

B. Microencapsulation of chia seed oil using chia seed

protein isolate-chia seed gum complex coacervates.

Int J Biol Macromol., Vol. 91, (2016) 347–357.

Velmurugan P., Ganeshan V., Nishter N.F. and

Jonnalagadda R.R. Encapsulation of orange and

lavender essential oils in chitosan nanospherical

particles and its application in leather for aroma

enrichment. Surfaces and Interfaces, Vol. 9, (2017)

–132.

De Barros Fernandes R.V., Borges S.V., Silva E.K., da

Silva Y.F., de Souza H.J.B., do Carmo E.L., de Oliveira

C.R., Yoshida M.I. and Botrel D.A. Study of ultrasoundassisted

emulsions on microencapsulation of ginger

essential oil by spray drying. Ind Crops Prod., Vol.

, (2016) 413–423.

Piletti R., Bugiereck A.M., Pereira A.T., Gussati E.,

Dal Magro J., Mello J.M.M., Dalcanton F., Ternus R.Z.,

Soares C., Riella H.G., et al. Microencapsulation of

eugenol molecules by β-cyclodextrine as a thermal

protection method of antibacterial action. Mater Sci

Eng C. Vol. 75, (2017) 259–271.

Sutaphanit P. and Chitprasert P. Optimisation of

microencapsulation of holy basil essential oil in

gelatin by response surface methodology. Food

Chem., Vol. 150, (2014) 313–320.

Yao Z.C., Chang M.W., Ahmad Z. and Li J.S.

Encapsulation of rose hip seed oil into fibrous zein

films for ambient and on demand food preservation

via coaxial electrospinning. J Food Eng., Vol. 191,

(2016) 115–123.

Salgado M., Rodríguez-Rojo S., Alves-Santos F.M. and

Cocero M.J. Encapsulation of resveratrol on lecithin

and β-glucans to enhance its action against Botrytis

cinerea. J Food Eng., Vol. 165, (2015) 13–21.

Munhuweyi K., Caleb O.J., Van Reenen A.J. and

Opara U.L. Physical and antifungal properties of

β-cyclodextrin microcapsules and nanofibre films

containing cinnamon and oregano essential oils.

LWT - Food Sci Technol., Vol. 87, (2018) 413–422.

Sosa N., Zamora M.C., Chirife J. and Schebor C.

Spray-drying encapsulation of citral in sucrose or

trehalose matrices: physicochemical and sensory

characteristics. Int J Food Sci Technol., Vol. 46,

(2011) 2096–2102.

Sosa N., Schebor C. and Pérez O.E. Encapsulation

of citral in formulations containing sucrose or

trehalose: Emulsions properties and stability. Food

Bioprod Process., Vol. 92, N° 3, (2014) 266–274.

Strassburger K., Startup W., Levey V., Mattingly

T., Briggs J., Harrison J. and Wilson T. Chapter 11:

Enhanced Stability of Citral in Juice Beverages by

Applying Cyclodextrin Micro Emulsion Technology.

In: N.C. Da Costa y R.J. Cannon (ed). Flavors in

Noncarbonated Beverages. American Chemical

Society, Washington DC, USA, (2010), 143–158.

Bhandari B.R., Dumoulin E.D., Richard H.M.J., Noleau

I. and Lebert A.M. Flavor Encapsulation by spray

drying: Aplication to citral and linalyl acetate. J Food

Sci., Vol. 57, N° 1, (1992) 217–221.

Yang X., Tian H., Ho C. and Huang Q. Inhibition of

Citral Degradation by Oil-in-Water Nanoemulsions

Combined with Antioxidants. J Agric Food Chem.,

Vol. 59, (2011) 6113–6119.

Ruktanonchai U., Srinuanchai W., Saesoo S., Sramala

I., Puttipipatkhachorn S. and Soottitantawat A.

Encapsulation of Citral Isomers in Extracted

Lemongrass Oil with Cyclodextrins: Molecular

Modeling and Physicochemical Characterizations.

Biosci Biotechnol Biochem., Vol. 75, N° 12, (2011)

–2345.

Yang X., Tian H., Ho C. and Huang Q. Stability of Citral

in Emulsions Coated with Cationic Biopolymer

Layers. J Agric Food Chem., Vol. 60, (2012) 402–409.

Weisheimer V., Miron D., Silva C.B., Guterres

S.S. and Schapoval E.E.S. Microparticles

containing lemongrass volatile oil: Preparation,

characterization and thermal stability. Pharmazie,

Vol. 65, (2010) 885–890.

Miron D., Battisti F., Caten C.S.T., Mayorga P. and

Schapoval E.E.S. Spectrophotometric Simultaneous

Determination of Citral Isomers in Cyclodextrin

Complexes with Partial Least Squares Supported

Approach. Curr Pharm Anal., Vol. 8, (2012) 401–408.

Roggo Y., Chalus P., Maurer L., Lema-Martinez C.,

Edmond A. and Jent N. A review of near infrared

spectroscopy and chemometrics in pharmaceutical

technologies. J Pharm Biomed Anal., Vol. 44, (2007)

–700.

Kawano S. Chapter 12: Application to Agricultural

Products and Foodstuff. In: H.W. Siesler, Y. Ozaki,

S. Kawata y H.M. Heise (eds). Near-Infrared

Spectroscopy: Principles, Instruments, Application.

rd. ed. Wiley-VCH Verlag GmbH, Weinheim,

Germany, (2007), 269–287.

López P., Gándara J. and Losada P. Infrared

spectrophotometric determination of citral

corrected for limonene interference in lemon and

orange essential oils. Food Chem., Vol. 46, N° 2,

(1993) 193–197.

Heise H.M. and Winzen R. Chapter 7: Chemometrics

in near-infrared spectroscopy. In: H.W. Siesler, Y.

Ozaki, S. Kawata y H.M. Heise (eds). Near-Infrared

Spectroscopy: Principles, Instruments, Application.

rd. ed. Wiley-VCH Verlag GmbH, Weinheim,

Germany, (2007), 125–162.

Vergara C., Saavedra J., Sáenz C., García P. and Robert

P. Microencapsulation of pulp and ultrafiltered

cactus pear (Opuntia ficus-indica) extracts and

betanin stability during storage. Food Chem., Vol.

, (2014) 246–251.

Bustamante A., Masson L., Velasco J., Del Valle J.M.

and Robert P. Microencapsulation of H. pluvialis

oleoresins with different fatty acid composition:

Kinetic stability of astaxanthin and alpha-tocopherol.

Food Chem., Vol. 190, (2016) 1013–1021.

Escuredo O., González-Martín M.I., Wells-Moncada

G., Fischer S. and Hernández-Hierro J.M. Amino acid

profile of the quinoa (Chenopodium quinoa Willd.)

using near infrared spectroscopy and chemometric

techniques. J Cereal Sci. Vol. 60, N° 1, (2014) 67–74.

Steuer B., Schulz H. and Läger E. Classification and

analysis of citrus oils by NIR spectroscopy. Food

Chem., Vol. 72, N° 1, (2001) 113–117.

Vásquez N., Magán C., Oblitas J., Chuquizuta T.,

Avila-George H. and Castro W. Comparison between

artificial neural network and partial least squares

regression models for hardness modeling during the

ripening process of Swiss-type cheese using spectral

profiles. J Food Eng., Vol. 219, (2018) 8–15.

Castro W., Prieto J.M., Guerra R., Chuquizuta T.,

Medina W.T., Acevedo-Juárez B. and Avila-George

H. Feasibility of using spectral profiles for modeling

water activity in five varieties of white quinoa grains.

J Food Eng., Vol. 238, (2018) 95–102.

Mehmood T., Liland K.H., Snipen L. and Sæbø S. A

review of variable selection methods in Partial Least

Squares Regression. Chemom Intell Lab Syst., Vol.

, (2012) 62–69.

Sun Y., Liu Y., Yu H., Xie A., Li X., Yin Y. and Duan X.

Non-destructive prediction of moisture montent

and freezable water content of purple-fleshed

sweet potato slices during drying process using

Hyperspectral Imaging Technique. Food Anal

Methods. Vol. 10, N° 5, (2017) 1535–1546.

Wilson N.D., Ivanova M.S., Watt R.A. and Moffat

A.C. The quantification of citral in lemongrass and

lemon oils by near-infrared spectroscopy. J Pharm

Pharmacol., Vol. 54, N° 9, (2002) 1257–1263.

Magwaza L.S., Opara U.L., Nieuwoudt H., Cronje

P.J.R., Saeys W. and Nicolaï B. NIR Spectroscopy

applications for internal and external quality

analysis of citrus fruit-A Review. Food Bioprocess

Technol., Vol. 5, N° 2, (2012) 425–444.

Shenk J.S., Workman J.J. and Weterhaus M.O. Chapter

- Aplication of NIR Spectroscopy to agricultural

products. In: D.A. Burns y E.W. Ciurczak (eds).

Handbook of Near-Infrared Analysis. 2th. editi.

Taylor & Francis Group, LLC, New York, USA, (2008),

–386.

Esposito V.V., Chin W.W., Henseler J. and Wang

H. Handbook of partial least squares: Concepts,

methods and aplications. Springer International

Publishing, Berlin, Germany, 2010.

Maaten L., Postma E. and Herik J. Dimensionality

Reduction: A Comparative - Review. Tilbg Cent Creat

Comput., (2009) 1–36.

Vega-Vilca J.C. y Guzmán J. Regresión PLS y PCA

como solución al problema de multicolinealidad en

regresión múltiple. Rev Matemática Teoría y Apl., Vol. 18, N° 1, (2011) 9–20.

Liu D., Sun D.W. and Zeng X.A. Recent advances in

wavelength selection techniques for Hyperspectral

Image processing in the food industry. Food

Bioprocess Technol., Vol. 7, (2014) 307–323.

Juliani H.R., Kapteyn J., Jones D., Koroch A.R.,

Wang M., Charles D. and Simon J.E. Application of

near-infrared spectroscopy in quality control and

determination of adulteration of african essential

oils. Phytochem Anal., Vol. 17, N° 2, (2006) 121–128.

Schulz H., Schrader B., Quilitzsch R. and Steuer

B. Quantitative analysis of various citrus oils by

ATR/FT-IR and NIR-FT Raman spectroscopy. Appl

Spectrosc., Vol. 56, N° 1, (2002) 117–124.

Schulz H., Quilitzsch R. and Krüger H. Rapid

evaluation and quantitative analysis of thyme,

origano and chamomile essential oils by ATR-IR and

NIR spectroscopy. J Mol Struct., Vol. 661-662, (2003)

–306.

Publicado
2019-08-20
Cómo citar
Yoplac, I., Avila-George, H., Vargas, L., Robert, P. y Castro, W. (2019) «Predicción del contenido superficial de citral en micropartículas mediante espectroscopía NIR y regresión por mínimos cuadrados parciales», Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 42(2), pp. 76-85. Disponible en: https://produccioncientificaluz.org/index.php/tecnica/article/view/26182 (Accedido: 26enero2025).
Sección
Artículos de Investigación