Comportamiento electroquímico del Triptófano (TRP) en presencia de interferentes empleando un electrodo de carbón vítreo modificado con Tiourea (TIO) y nanopartículas de oro (AuNPs)
Resumen
La oxidación electroquímica del TRP sobre superficies de carbón vítreo (SCV) es un proceso de transferencia electrónica lento que ocurre a altos sobrepotenciales y se ve afectado por la adsorción de los productos de la oxidación de ciertas sustancias interferentes tales como, ácido ascórbico (AA) y ácido úrico (AU), las cuales se oxidan a potenciales muy cercanos al potencial del TRP. En el presente trabajo se modificó un electrodo de carbón vítreo electroquímicamente y físicamente con TIO y AuNPs sobre el cuál se estudió por Voltamperometria Cíclica (VC) y Voltamperometria de Onda Cuadrada (VOC), el comportamiento electroquímico del TRP en presencia de AA y AU. Este electrodo modificado AuNPs/ TIO/EQ/CV, permitió la detección y cuantificación de TRP en presencias de AA y AU con un límite de detección de 162 nmol L-1, un límite de cuantificación de 539 nmol L-1 y un coeficiente de correlación de 0,9990.Descargas
Citas
Fernstrom J.D. “Role of precursor availability in
control of monoamine biosynthesis in brain”.
Physiol. Rev., Vol. 63 (2), (1983), 484–546.
Schaechter J.D, Wurtman R.J. “Serotonin release
varies with brain tryptophan levels”. Brain Res., Vol.
(1-2), (1990), 203–210.
Coppen Br. A. “The biochemistry of affective
disorders”. J. Psychiatry, Vol. 113, (1967), 1237-
Widner B, Leblhuber F, Fuchs D. “Increased
neopterin production and tryptophan degradation
in advanced Parkinson’s disease”. J. Neural Transm.,
Vol. 109, (2002), 181–189.
Porter R.J, Lunn B.S, Walker L, Gray J.M, Ballard
C.G, O’Brien J.T. “Cognitive Deficit Induced by Acute
Tryptophan Depletion in Patients With Alzheimer’s
Disease”. Am. J. Psychiatry, Vol. 157, (2000), 638-
Yust M, Pedroche J, Girón J, Vioque J, Millán F, Alaiz M.
“Determination of tryptophan by high-performance
liquid chromatography of alkaline hydrolysates with
spectrophotometric detection”. Food Chemistry, Vol.
(2), (2004), 317-320.
Jin W, Li X, Gao N. “Simultaneous Determination
of Tryptophan and Glutathione in Individual Rat
Hepatocytes by Capillary Zone Electrophoresis with
Electrochemical Detection at a Carbon Fiber Bundle−
Au/Hg Dual Electrode”. Analytical chemistry, Vol.
(15), (2003), 3859-3864.
Chen H, Li L, Zhou M, Jun Y. “Flow-injection
chemiluminescence determination of tryptophan
using galangin-potassium permanganate–
polyphosphoric acid system”. Chinese Chemical
Letters, Vol. 19(2), (2008), 203-206.
Jin G.P, Lin X.Q. The electrochemical behavior
and amperometric determination of tyrosine and
tryptophan at a glassy carbon electrode modified
with butyrylcholine. Electrochem. Commun., Vol. 6,
(2004), 454-460
Agui L, Gonzalez-Cortes A, Yanez-Sedeno P,
Pingarron J.M. “Continuous monitoring of amino
acids and related compounds with poly (3-
methy1thiophene)-coated cylindrical carbón fiber
microelectrodes”. Anal. Chim. Acta, Vol. 401, (1999),
-149.
Fiorucci A.R, Cavalheiro E.T.G. “The use of carbon
paste electrode in the direct voltammetric
determination of tryptophan in pharmaceutical
formulations”. J. Pharm. Biomed. Anal., Vol. 28,
(2002), 909–915.
Ya Y, Luo D, Zhan G, Li C. “Electrochemical
Investigation of Tryptophan at a Poly(paminobenzene sulfonic acid) Film Modified Glassy
Carbon Electrode”. Bull. Korean Chem. Soc., Vol.
(5), (2008), 928-932.
Arvand M, Zanjanchi M.A, Islamnezhad A. “ZeoliteModified Carbon-Paste Electrode as a Selective
Voltammetric Sensor for Detection of Tryptophan
in Pharmaceutical Preparations”. Analytical Letters,
Vol. 42(4), (2009), 727-738.
Dadamos T.R.L, Teixeira M.F.S. “Electrochemical
Sensor for Tryptophan Determination Based on
Copper-cobalt Hexacyanoferrate Film Modified
Graphite Electrode”. Electrochimica Acta, Vol. 54(2),
(2009), 4552-4558.
Guo Y, Guo S, Fang Y, Dong S. “Gold nanoparticle/
carbon nanotube hybrids as an enhanced material
for sensitive amperometric determination of
tryptophan”. Electrochimica Acta, Vol. 55, (2010),
-3931.
Guney S, Yildiz G. “Determination of tryptophan using
electrode modified with poly (9-aminoacridine)
functionalized multi-walled carbon nanotubes”.
Electrochimica Acta, Vol. 57, (2011), 290-296.
Liu X, Luo L, Ding Y, Ye S. “Poly-glutamic acid
modified carbón nanotube-doped carbón paste
electrode for sensitive detection of L-tryptophan”.
Bioelectrochemistry, Vol. 82(1), (2011), 38-45.
Han J, Wang Q, Zhai J, Han L, Dong S. “An
amperometric sensor for detection of tryptophan
bases on a pristine multi-walled carbon nanotube/
graphene oxide hybrid, Analyst, Vol. 140, (2015),
-5300.
Yokus O.A, Kardas F, Akyildirim O, Erene T, Atar N,
Yola M.L. “Sensitive voltammetric sensor based
on polyoxometalate/reduced graphene oxide
nanomaterial: application to the simultaneous
determination of L-tyrosine and L-tryptophan”,
Sens. Actuator B, Vol. 233, (2016), 47-54.
Huixiang L.Y, Wang D.Y, Juan L, Biquan S, Song Z,
Jilie K. An electrochemical sensor for simultaneous
determination of ascorbic acid, dopamine, uric
acid and tryptophan based on MWNTs bridged
mesocellular graphene foam nanocomposite,
Talanta, Vol. 127, (2014), 255-261.
Babaei A, Zendehdel M, Khalilzadeh B, Taheri A.
“Simultaneus determination of tryptophan, uric acid
and ascorbic acid at iron (III) doped zeolite modified
carbon paste electrode”. Colloids Surf: Biointerfaces,
Vol. 66, (2008), 226-232.
Fiorucci R, Gomez A, Cavalheiro E. “The use of
carbón paste electrode in the direct voltammetric
determination of tryptophan in pharmaceutical
formulations”. Journal of Pharmaceutical and
Biomedical Analysis, Vol. 28, (2001), 909-915.
A Gopalan, K Lee, K Mahnesh, P Santhosh, J Kim, J
Kang. Electrochemical determination of dopamine
and ascorbic acid at a novel gold nanoparticles
distributed poly(4-aminothiophenol) modified
electrode. Talanta, 71, 1774-1781 (2007).
D Jia, J Dai, H Yuan, L Lei, D Xiao. Selective
detection of dopamine in the presence of uric acid
using a gold nanoparticles-poly(luminol) hybrid
film and multi-walled carbón nanotubes with
incorporated–cyclodextrin modified glassy carbón
electrode. Talanta, 85, 2344–2351 (2011).
W Cun, Y Ruo, C Yaqin, C Shihong, H Fangxin, Z
Meihe. Simultaneous determination of ascorbic
acid, dopamine, uric acid and tryptophan on
gold nanoparticles/overoxidized-polyimidazole
composite modified glassy carbón electrode.
Analytica Chimica Acta, 741, 15-20 (2012).
Cai H, Xu C, He P, Fang Y. “Colloid Au-enhanced DNA
immobilization for the electrochemical detection of
sequence‐specific DNA”. J. Electroanal. Chem., Vol.
, (2001), 78-85.
Cha R, Yuan R, Chai Y, Ou Ch, Cao Sh, Li X.
“Amperometric inmunosensor based on layer-bylayer assembly of gold nanoparticles and methylene
blue on tiourea modified glassy carbon electrode for
determination of human chorionic gonadotrophin”.
Talanta, Vol. 74, (2008), 1330-1336.
Cai H, Xu C, He P, Fang F. “Colloid Au-enhanced DNA
immobilization for the electrochemical detection of
sequence-specific DNA”. J. Electroanal. Chem., Vol.
, (2001), 78-85.
Kinoshita K, Bett J.A.S., “Potentiodynamic analysis
of surface oxides on carbon blacks”, Carbon, Vol. 11,
(1973), 403–411.
Ozcan A, Sahin Y. “A novel approach for the selective
determination of tryptophan in blood serum in the
presence of tyrosine based on the electrochemical
reduction of oxidation product of tryptophan
formed in situ on graphite electrode”. Biosensor and
Bioelectronics, Vol. 31(1), (2012), 26-31.
Copyright
La Revista Técnica de la Facultad de Ingeniería declara que los derechos de autor de los trabajos originales publicados, corresponden y son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y publicación sin restricciones, según la licencia pública internacional no comercial ShareAlike 4.0