Comportamiento electroquímico del Triptófano (TRP) en presencia de interferentes empleando un electrodo de carbón vítreo modificado con Tiourea (TIO) y nanopartículas de oro (AuNPs)

  • S Menolasina Laboratorio de Investigaciones Electroquimicas, Facultad de Farmacia y Bioánalisis, Universidad de Los Andes, Mérida 501, Venezuela http://orcid.org/0000-0002-9638-0997
  • R Campos Laboratorio de Investigaciones Electroquimicas, Facultad de Farmacia y Bioánalisis, Universidad de Los Andes, Mérida 501, Venezuela
  • C Padilla Laboratorio de Investigaciones Electroquimicas, Facultad de Farmacia y Bioánalisis, Universidad de Los Andes, Mérida 501, Venezuela
Palabras clave: nano partículas de oro, oxidación electroquímica, triptófano

Resumen

La oxidación electroquímica del TRP sobre superficies de carbón vítreo (SCV) es un proceso de transferencia electrónica lento que ocurre a altos sobrepotenciales y se ve afectado por la adsorción de los productos de la oxidación de ciertas sustancias interferentes tales como, ácido ascórbico (AA) y ácido úrico (AU), las cuales se oxidan a potenciales muy cercanos al potencial del TRP. En el presente trabajo se modificó un electrodo de carbón vítreo electroquímicamente y físicamente con TIO y AuNPs sobre el cuál se estudió por Voltamperometria Cíclica (VC) y Voltamperometria de Onda Cuadrada (VOC), el comportamiento electroquímico del TRP en presencia de AA y AU. Este electrodo modificado AuNPs/ TIO/EQ/CV, permitió la detección y cuantificación de TRP en presencias de AA y AU con un límite de detección de 162 nmol L-1, un límite de cuantificación de 539 nmol L-1 y un coeficiente de correlación de 0,9990.

Descargas

La descarga de datos todavía no está disponible.

Citas

Fernstrom J.D. “Role of precursor availability in

control of monoamine biosynthesis in brain”.

Physiol. Rev., Vol. 63 (2), (1983), 484–546.

Schaechter J.D, Wurtman R.J. “Serotonin release

varies with brain tryptophan levels”. Brain Res., Vol.

(1-2), (1990), 203–210.

Coppen Br. A. “The biochemistry of affective

disorders”. J. Psychiatry, Vol. 113, (1967), 1237-

Widner B, Leblhuber F, Fuchs D. “Increased

neopterin production and tryptophan degradation

in advanced Parkinson’s disease”. J. Neural Transm.,

Vol. 109, (2002), 181–189.

Porter R.J, Lunn B.S, Walker L, Gray J.M, Ballard

C.G, O’Brien J.T. “Cognitive Deficit Induced by Acute

Tryptophan Depletion in Patients With Alzheimer’s

Disease”. Am. J. Psychiatry, Vol. 157, (2000), 638-

Yust M, Pedroche J, Girón J, Vioque J, Millán F, Alaiz M.

“Determination of tryptophan by high-performance

liquid chromatography of alkaline hydrolysates with

spectrophotometric detection”. Food Chemistry, Vol.

(2), (2004), 317-320.

Jin W, Li X, Gao N. “Simultaneous Determination

of Tryptophan and Glutathione in Individual Rat

Hepatocytes by Capillary Zone Electrophoresis with

Electrochemical Detection at a Carbon Fiber Bundle−

Au/Hg Dual Electrode”. Analytical chemistry, Vol.

(15), (2003), 3859-3864.

Chen H, Li L, Zhou M, Jun Y. “Flow-injection

chemiluminescence determination of tryptophan

using galangin-potassium permanganate–

polyphosphoric acid system”. Chinese Chemical

Letters, Vol. 19(2), (2008), 203-206.

Jin G.P, Lin X.Q. The electrochemical behavior

and amperometric determination of tyrosine and

tryptophan at a glassy carbon electrode modified

with butyrylcholine. Electrochem. Commun., Vol. 6,

(2004), 454-460

Agui L, Gonzalez-Cortes A, Yanez-Sedeno P,

Pingarron J.M. “Continuous monitoring of amino

acids and related compounds with poly (3-

methy1thiophene)-coated cylindrical carbón fiber

microelectrodes”. Anal. Chim. Acta, Vol. 401, (1999),

-149.

Fiorucci A.R, Cavalheiro E.T.G. “The use of carbon

paste electrode in the direct voltammetric

determination of tryptophan in pharmaceutical

formulations”. J. Pharm. Biomed. Anal., Vol. 28,

(2002), 909–915.

Ya Y, Luo D, Zhan G, Li C. “Electrochemical

Investigation of Tryptophan at a Poly(paminobenzene sulfonic acid) Film Modified Glassy

Carbon Electrode”. Bull. Korean Chem. Soc., Vol.

(5), (2008), 928-932.

Arvand M, Zanjanchi M.A, Islamnezhad A. “ZeoliteModified Carbon-Paste Electrode as a Selective

Voltammetric Sensor for Detection of Tryptophan

in Pharmaceutical Preparations”. Analytical Letters,

Vol. 42(4), (2009), 727-738.

Dadamos T.R.L, Teixeira M.F.S. “Electrochemical

Sensor for Tryptophan Determination Based on

Copper-cobalt Hexacyanoferrate Film Modified

Graphite Electrode”. Electrochimica Acta, Vol. 54(2),

(2009), 4552-4558.

Guo Y, Guo S, Fang Y, Dong S. “Gold nanoparticle/

carbon nanotube hybrids as an enhanced material

for sensitive amperometric determination of

tryptophan”. Electrochimica Acta, Vol. 55, (2010),

-3931.

Guney S, Yildiz G. “Determination of tryptophan using

electrode modified with poly (9-aminoacridine)

functionalized multi-walled carbon nanotubes”.

Electrochimica Acta, Vol. 57, (2011), 290-296.

Liu X, Luo L, Ding Y, Ye S. “Poly-glutamic acid

modified carbón nanotube-doped carbón paste

electrode for sensitive detection of L-tryptophan”.

Bioelectrochemistry, Vol. 82(1), (2011), 38-45.

Han J, Wang Q, Zhai J, Han L, Dong S. “An

amperometric sensor for detection of tryptophan

bases on a pristine multi-walled carbon nanotube/

graphene oxide hybrid, Analyst, Vol. 140, (2015),

-5300.

Yokus O.A, Kardas F, Akyildirim O, Erene T, Atar N,

Yola M.L. “Sensitive voltammetric sensor based

on polyoxometalate/reduced graphene oxide

nanomaterial: application to the simultaneous

determination of L-tyrosine and L-tryptophan”,

Sens. Actuator B, Vol. 233, (2016), 47-54.

Huixiang L.Y, Wang D.Y, Juan L, Biquan S, Song Z,

Jilie K. An electrochemical sensor for simultaneous

determination of ascorbic acid, dopamine, uric

acid and tryptophan based on MWNTs bridged

mesocellular graphene foam nanocomposite,

Talanta, Vol. 127, (2014), 255-261.

Babaei A, Zendehdel M, Khalilzadeh B, Taheri A.

“Simultaneus determination of tryptophan, uric acid

and ascorbic acid at iron (III) doped zeolite modified

carbon paste electrode”. Colloids Surf: Biointerfaces,

Vol. 66, (2008), 226-232.

Fiorucci R, Gomez A, Cavalheiro E. “The use of

carbón paste electrode in the direct voltammetric

determination of tryptophan in pharmaceutical

formulations”. Journal of Pharmaceutical and

Biomedical Analysis, Vol. 28, (2001), 909-915.

A Gopalan, K Lee, K Mahnesh, P Santhosh, J Kim, J

Kang. Electrochemical determination of dopamine

and ascorbic acid at a novel gold nanoparticles

distributed poly(4-aminothiophenol) modified

electrode. Talanta, 71, 1774-1781 (2007).

D Jia, J Dai, H Yuan, L Lei, D Xiao. Selective

detection of dopamine in the presence of uric acid

using a gold nanoparticles-poly(luminol) hybrid

film and multi-walled carbón nanotubes with

incorporated–cyclodextrin modified glassy carbón

electrode. Talanta, 85, 2344–2351 (2011).

W Cun, Y Ruo, C Yaqin, C Shihong, H Fangxin, Z

Meihe. Simultaneous determination of ascorbic

acid, dopamine, uric acid and tryptophan on

gold nanoparticles/overoxidized-polyimidazole

composite modified glassy carbón electrode.

Analytica Chimica Acta, 741, 15-20 (2012).

Cai H, Xu C, He P, Fang Y. “Colloid Au-enhanced DNA

immobilization for the electrochemical detection of

sequence‐specific DNA”. J. Electroanal. Chem., Vol.

, (2001), 78-85.

Cha R, Yuan R, Chai Y, Ou Ch, Cao Sh, Li X.

“Amperometric inmunosensor based on layer-bylayer assembly of gold nanoparticles and methylene

blue on tiourea modified glassy carbon electrode for

determination of human chorionic gonadotrophin”.

Talanta, Vol. 74, (2008), 1330-1336.

Cai H, Xu C, He P, Fang F. “Colloid Au-enhanced DNA

immobilization for the electrochemical detection of

sequence-specific DNA”. J. Electroanal. Chem., Vol.

, (2001), 78-85.

Kinoshita K, Bett J.A.S., “Potentiodynamic analysis

of surface oxides on carbon blacks”, Carbon, Vol. 11,

(1973), 403–411.

Ozcan A, Sahin Y. “A novel approach for the selective

determination of tryptophan in blood serum in the

presence of tyrosine based on the electrochemical

reduction of oxidation product of tryptophan

formed in situ on graphite electrode”. Biosensor and

Bioelectronics, Vol. 31(1), (2012), 26-31.

Publicado
2019-08-19
Cómo citar
Menolasina, S., Campos, R. y Padilla, C. (2019) «Comportamiento electroquímico del Triptófano (TRP) en presencia de interferentes empleando un electrodo de carbón vítreo modificado con Tiourea (TIO) y nanopartículas de oro (AuNPs)», Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 42(1), pp. 3-9. Disponible en: https://produccioncientificaluz.org/index.php/tecnica/article/view/24243 (Accedido: 20noviembre2024).
Sección
Artículos de Investigación