Modelación reológica del suero de leche en función de la velocidad de corte, temperatura y concentración de sólidos totales. / Modeling rheological of whey on function of shear rate, temperature and total solids concentration.

Daniel Montalvo-Salinas, Francisco Ruiz-Terán, Guadalupe Luna-Solano, Denis Cantu-Lozano

Resumen


Resumen

El suero de leche es el subproducto más abundante de la industria láctea y su disposición en el medio ambiente sin un tratamiento previo se debe a la falta de conocimiento de sus características nutricionales, fisicoquímicas y fenomenológicas (reológicas) de este subproducto. El objetivo de esta investigación fue estudiar las propiedades reológicas de suero de leche en función de la temperatura y concentración de sólidos totales, para ello se desarrollaron curvas de flujo viscoso en estado estacionario con el incremento de la temperatura (20 a 90°C) a diferentes concentraciones de sólidos totales (25, 50, 75, 100%). Los datos experimentales se midieron con un reómetro AntonPaar MCR 301 y se ajustaron con el software Rheoplus/32 V2. 81, obteniendo el modelo de Herschel-Bulkley como el modelo reológico que mejor describe el comportamiento fenomenológico del suero de leche. Los resultados obtenidos mostraron que el suero de leche es un fluido no Newtoniano con características dilatantes, donde la viscosidad aumenta con el incremento de la concentración y disminuye con el aumento de la temperatura. El diseño de experimentos factorial 3k permitió determinar a la temperatura como factor de mayor efecto significativo sobre la viscosidad del suero de leche.

Abstract

The whey is the most abundant by-product of the dairy industry and its disposal in the environment without prior treatment is due to the lack of knowledge of its nutritional, physicochemical and phenomenological (rheological) characteristics of this by-product.The goal of this research was to study the rheological properties of whey as a function of temperature and concentration of total solids, for which viscous flow curves were developed in steady state with the increase in temperature (20 to 90°C) at different concentrations of total solids (25, 50, 75, 100%).The experimental data were measured with an Anton Paar MCR 301 rheometer and adjusted with the Rheoplus/32 V2. 81 software, obtaining the Herschel-Bulkley model as the rheological model that best describes the phenomenological behavior of whey.The results obtained showed that the whey is a non-Newtonian fluid with dilatant characteristics, where the viscosity increases with the increase in concentration and decreases with the increase in temperature. The design of factorial experiments 3k that allowed to determine the temperature as a factor of greater significant effect on the viscosity of the whey


Palabras clave


Modelos reológicos;Herschel-Bulkley; velocidad de corte; temperatura; concentración; suero de leche; Rheological models; Herschel-Bulkley; shear rate; temperature; concentration; whey.

Texto completo:

PDF

Referencias


Prazares, A.R., Carvalho, F. & Rivas J.: Cheese whey

management: A review. Journal of Environmental

Management, Vol. 110, No. 1 (2012) 48-68.

Guerra, A. V. A, Castro, L. M. M. & Tovar, A. L. Q.:

Aprovechamiento del lactosuero como fuente de

energía nutricional para minimizar el problema de

contaminación ambiental. Revista de Investigación

Agraria y Ambiental, Vol. 4, No. 2(2013) 55-65.

Monteros-Lagunes, M., Juárez-Lagunes, F. I. & Garcia-Galindo, H. S.: Fermented Whey whit Lactobacilli

for calf feeding in the Tropics. Agrociencia, Vol. 43,

No. 6(2009) 585-593.

Andrade, R.D., Ortega, F.A., Montes, E.J., Torres, R.,

Pérez, O.A., Castro, M. & Gutiérrez, L.A.: Caracterización fisicoquímica y reológica de la pulpa de

guayaba (Psidiumguajava L.) variedades híbrido de

KlomSali, Puerto Rico, D14 y Red. Revista de la Facultad Química y Farmacéutica, Vol. 16, No.1 (2009)

-18.

Quek, M. C., Chin, N. L., &Yusof, Y. A.: Modelling of

rheological behavior of soursop juice concentrates

using shear rate-temperature-concentration superposition. Journal of Food Engineering, Vol. 118,

No.4(2013) 380-386.

Toğrul, H., & Arslan, N.: Mathematical model for prediction of apparent viscosity of molasses. Journal of

Food Engineering, Vol. 62, No.3 (2004) 281-289.

Tabilo-Munizaga, G. & Barbosa-Cánovas. G.V.: Rheology for the food industry. Journal of Food Engineering, Vol. 67, No.1 (2005) 147-156.

Abu-Jdayil, B.: Modelling the time-dependent rheological behavior of semisolid foodstuffs. Journal of

Food Engineering, Vol. 57, No.1(2003) 97-102.

Cepeda, E. & Villarán, M.C.: Density and viscosity of

Malus floribunda juice as a function of concentration

and temperature. Journal Food Engineering, Vol. 42,

No. 2(1999) 103-107.

Zainal. B.S., Rahman, R. A., Ariff, A.B., Saari, B.N. &

Asbi, B.A.: Effects of temperature on the physical

properties of pink guava juice at two different concentrations. Journal of Food Engineering, Vol. 43 No.

(2000) 55-59.

Arslan, E., Yener, M.E. &Esin, A.: Rheological characterization of tahin/pekmez (sesame paste/concentrated grape juice) blends. Journal of Food Engineering, Vol. 69, No. 2(2005) 167-172.

Vandresen, S., Quadri, M.G., de Souza, J.A. &Hotza, D.:

Temperature effect on the rheological behavior of

carrot juices. Journal of Food Engineering, Vol. 92,

No. 3(2009) 269-274.

Karaman, S. & Kayacier, A.: Effect of temperature on

rheological characteristics of molasses: Modeling

of apparent viscosity using Adaptive Neuro-Fuzzy

Inference System (ANFIS). LWT- Food Science and

Technology, Vol. 44, No. 8(2011) 1717-1725.

Ibarz, A., Gonzales, C. & Esplugas, S.: Rheology of

clarified fruit juices. III: Orange Juices. Journal of

Food Engineering, Vol. 21, No. 4(1993) 485-494.

Juszczak, L., & Fortuna, T.: Effect of temperature and

soluble solid content on viscosity of cherry juice

concentrate. International Agrophysics, Vol. 18, No.

(2004) 17-21.

Da Silva, F.C., Guimarães, D.H. P., & Gasparetto, C.

A.:Reología do suco de acerolaefeitos da concentracão e temperatura. CienciaTecnología de Alimentos, Vol. 25, No.1(2005) 121-126.

Rao, A.: Rheology of Fluid and Semisolid Foods: Principles and Applications, Springer Science & Business

Media, United States of America, 2007.

Manayay, D. & Ibarz, A.: Modelamiento de la cinética

de reacciones del pardeamiento no enzimático y el

comportamiento reológico, en el proceso térmico de

jugos y pulpas de frutas. Scientia Agropecuaria Vol.

, No. 2(2010) 155-168.

Magerramov, M.A., Abdulagatov, A.I., Azizov, N.D. &

Abdulagatov, I.M.: Effect of temperature, concentration, and pressure on the viscosity of pomegranate

and pear juice concentrates. Journal of Food Engineering, Vol. 80, No. 2 (2007) 476-489

Belibağli, K. B. & Dalgic, A. C.: Rheological properties

of sour-cherry juice and concentrate. International

Journal of Food Science and Technology, Vol. 42, No.

(2007) 773-776.

Juszczack, L., Witczak, M., Fortuna, T. & Solarz, B.:

Effect of temperature and soluble solids content on

the viscosity of beetroot (Beta vulgaris) juice concentrate. International Journal of Food Properties,

Vol. 13, No. 1 (2010) 1364-1372.

Augusto, P.E., Cristianini, M. & Ibarz, A.: Effect of

temperature on dynamic and steady-state shear

rheological properties of siriguela (Spondiaspurpurea L.) pulp. Journal of Food Engineering, Vol. 108,

No. 2(2012) 283-289.

Genovese, D.B. & Rao, M. A.: Components of vane

yield stress of structured food dispersions. Journal

of Food Science, Vol. 70, No. 8(2005) 498-504.

Košmerl, T., Abramovič, H. & Klofutar, C.: The rheological properties of Slovenian wines. Journal of

Food Engineering, Vol. 46, No. 3(2000) 165-171.

Harper, J.C. & Sahrigi, A.E.:Viscometric behavior of

tomato concentrates. Journal of Food Science, Vol.

, No.3(1965) 470-476.

Castaldo, D., Palmieri, L., Voi, A. & Costabile, P.: Flow

properties of Babaco (CaricaPentagona) purees and

concentrates. Journal of Texture Studies, Vol. 21, No.

(1990) 253-264.

Kaya, A. & Sözer, N.:Rheological behavior of sour

pomegranate juice concentrates (Punicagranatum

L.). International Journal of Food Science and Technology, Vol. 40 No. 2(2005) 223-227.

Mackey, K.L., Ofoli, R. Y., Morgan, R. G & Steffe, J. F.:

Rheological modeling of potato flour during extrusion cooking. Journal of Food Process Engineering,

Vol. 12, No. 1(1989) 1-11.

Ibarz, A. & Barbosa-Canovas,G.V.,Unit Operations in

Food Engineering, CRC Press LLC, United Estate of

America, 2003.

Baroutian, S., Eshtiaghi, N. & Gapes, J.D.: Rheology

of primary and secondary sewage sludge mixture:

Dependency o temperature and solid concentration.

Bioresource Technology, Vol. 140,(2013) 227-233.

Sun, A. & Gunasekaran, S.: Yield stress in foods: measurements and applications. International Journal of

Food Properties, Vol. 12, No. 1(2009) 70-101.

Chuah, T. G., Ling, H. L., Chin, N. L., Choong, T. S. &

Fakhru´l- Razi, A.: Effect of temperature on rheological behavior of dragon fruit (Hylocereus sp.) juice. International Journal of Food Engineering, Vol. 4, No.

(2008).

Hassan, B.H. & Hobani, A.I.: Flow properties of

Roselle (Hibiscus sabdariffa L.) Extract. Journal of

Engineering, Vol 35, No.4(1998) 459-470.

Chin, N.L., Chan, S. M., Yusof, Y.A., Chuah, T. G. & Talib,

R.A.: Modelling of rheological behavior of pummel

juice concentrates using master-curve. Journal of

Food Engineering, Vol. 93, No. 2 (2009) 134-140.

Saravacos, G.D.: Effect of temperature on viscosity of

fruit juices and purees. Journal of Food Science, Vol.

, No. 2(1970) 122–125.

Grigelmo-Miguel, N., Ibarz-Ribas. A. & Martín-Belloso, O.: Rheology of peach dietary fibre suspensions.

Journal of Food Engineering, Vol. 39, No. 1(1999)

-99.






Universidad del Zulia /Venezuela/ Revista Técnica de la Facultad de Ingeniería/ revistatecnica@gmail.com /

p-ISSN: 0254-0770 / e-ISSN: 2477-9377 

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 3.0 Unported.