Contenido mineral de la semilla e índice de cosecha de nutrientes de la variedad de frijol común “Azufrado Reyna”
Resumen
El frijol es una leguminosa muy importante que constituye parte de la alimentación en Latinoamérica y otros países. Actualmente, es importante conocer los valores de remoción nutrimental en frijol para ajustar recomendaciones agronómicas, incrementar la eficiencia en el uso de nutrientes y conocer el contenido mineralógico de la semilla como parámetro fundamental de calidad. Se estableció un experimento con el propósito de investigar la respuesta del cultivo de a diferentes dosis de fertilización NPK en concentración mineral de semilla e índice de cosecha nutrimental. El experimento consistió en bloques completos al azar con tres repeticiones. De acuerdo a los resultados, las dosis de fertilización influyeron únicamente en la concentración total de proteína, fósforo y hierro. Los valores de remoción nutrimental total fueron K>Ca>P>Mg y Fe>Zn>Mn>B>. Mientras, que los valores del índice de cosecha nutrimental indicaron que el N, P, Fe y Zn exhibieron un grado de movilidad mayor hacia el grano en comparación con el resto de los nutrientes evaluados. Estos parámetros podrían representar un rasgo especifico en términos de calidad nutricional en variedades de frijol común, además de servir como valores de referencia para estimar más precisamente la remoción nutrimental del suelo.
Descargas
Citas
Andersson, M. S., Saltzman, A., Virk, P. S., & Pfeiffer, W. (2017). Progress update: Crop development of biofortified staple food crops under Harvestplus. African Journal of Food, Agriculture, Nutrition and Development, 17, 11906-35. https://www.ajol.info/index.php/ajfand/article/view/155123
Antova, G., Stoilova, T., & Ivanova, M. (2014). Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. Journal of Food Composition and Analysis, 33(2), 146-152. https://www.sciencedirect.com/science/article/abs/pii/S0889157514000064
Astudillo, C. & Blair, M. (2008). Contenido de hierro y cinc en la semilla y su respuesta al nivel de fertilización con fósforo en 40 variedades de fríjol colombianas. Agronomía Colombiana, 26(3), 471-476.
Araméndiz-Tatis, H., Cardona-Ayala, C. E., & Combatt-Caballero, E. M. (2016). Contenido nutricional de líneas de fríjol caupí (Vigna unguiculata L. Walp.) Seleccionadas de una Población Criolla. Información Tecnológica, 27(2), 53-60. http://dx.doi.org/10.4067/S0718-07642016000200007
Avanza, M., Acevedo, B., Chaves, M., & Añon, M. (2013). Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: Principal component analysis. Food Science and Technology, 51(1), 148-157. https://www.sciencedirect.com/science/article/pii/S0023643812003908
Bänziger, M., & Long, J. (2000). The potential for increasing the iron and zinc density of Maize through plant-breeding. Food Nutrition, Bulletin 21, 397-400.
Bender, R. R., Haegele, J. W., & Below, F. E. (2015). Nutrient uptake, partitioning and remobilization in modern soybean varieties. Agronomy Journal, 107, 563-573. http://dx.doi.org/10.2134/agronj14.0435
Bennett, E. J., Roberts, J. A., & Wagstaff, C. (2011). The role of the pod in seed development: strategies for manipulating yield. New Phytologist. 190, 838-853. http://dx.doi.org/10.1111/j.1469-8137.2011.03714.x
Below, F. E., Haegele, J. W., & Ruffo. M. L. (2010). Illinois Fertilizer Conference Proceedings, Peoria, IL. Jan. 2010. Illinois Fertilizer and Chemical Association, Bloomington, IL.
Bulyaba, R., Winham, D. M., Lenssen, A. W., Moore, K. J., Kelly, J. D., & Brick, M. A. (2020). Genotype by location effects on yield and seed nutrient composition of common bean. Agronomy 10, 347. http://dx.doi.org/10.3390/agronomy10030347
Bray, R. H. 1954. A nutrient mobility concept of soil-plant relationships. Soil Science. 78, 9-22.
Das, A., Baiswar, P., Patel, D. P., Munda, G. C., Ghosh, P. K., & Chandra, S. (2010). Productivity, nutrient harvest index, nutrient balance sheet and economics of lowland rice (Oryza sativa) as influenced by composts made from locally available plant biomass. Indian Journal of Agricultural Sciences, 80(8), 686-690.
Deckij-Kachinski, W., William-Ávila, F., Lopes-Muller, M. M., Rodrigues-dos Reis, A., Rampim, L., & Borecki-Vidigal, J. C. (2020). Nutrition, yield and nutrient export in common bean under zinc fertilization in no-till system. Ciência e Agrotecnologia, 44: e029019. http://dx.doi.org/10.1590/1413-7054202044029019
Divito, G., Echeverría, H., Andrade, F., and Sadras, V. O. 2016. Soybean shows an attenuated nitrogen dilution curve irrespective of maturity group and sowing date. Field Crops Research. 186, 1-9. http://dx.doi.org/10.1016/j.fcr.2015.11.004
Espinoza-García, N., Martínez-Martínez, R., Chávez-Servia, J. L., Vera-Guzmán, A. M., Carrillo-Rodríguez, J. E., Heredia-García, E., & Velasco-Velasco, V. E. (2016). Mineral content in seeds of native populations of Common Bean (Phaseolus vulgaris L.). Revista Fitotecnia Mexicana. 39(3), 215-223. https://www.scielo.org.mx/pdf/rfm/v39n3/0187-7380-rfm-39-03-00215.pdf
Esper-Neto, M., Moreira-Lara, L., Maciel de Oliveira, S., dos Santos, R. F., Lucca- Braccini, A. Takeyoshi-Inoue, T., & Batista, M. A. (2021). Nutrient Removal by Grain in Modern Soybean Varieties. Frontiers in Plant Science, 12, 615019. https://doi.org/10.3389/fpls.2021.615019
Farmaha, B. S., Eskridge, K. M., Cassman, K. G., Specht, J. E., Yang, H., & Grassini, P. (2016). Rotation impact on on-farm yield and input-use efficiency in high-yield irrigated maize–soybean systems. Agronomy Journal, 108, 2313-2321. https://doi.org/10.2134/agronj2016.01.0046
Frota, K., Soares, R., & Arêas, J. (2008). Composição química do feijão caupi (Vigna unguiculata L. Walp), cultivar BRS-Milênio. Ciênc. Tecnol. Aliment. 28(2), 470-476. https://doi.org/10.1590/S0101-20612008000200031
García, C. B., & Grusak, M. A. (2015). Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula. Frontiers in Plant Science, 6, 622. https://doi.org/ 10.3389/fpls.2015.00622
Gouveia, C. S. S., Freitas, G., de Brito, J. H., Slaski, J. J., & Pinheiro de Carbalho, M. A. A. (2014). Nutritional and mineral variability in 52 accessions of common bean varieties (Phaseolus vulgaris L.) from Madeira Island. Agricultural Sciences, 5, 317-329. http://dx.doi.org/10.4236/as.2014.54034
Gül, K., Egesel, C.Ö., & Turhan, H. (2008). The effects of planting time on fatty acids and tocopherols in chickpea. Eur Food Res Technology, 226, 517-522. http://dx.doi.org/ 10.1007/s00217-007-0564-5
Haas, J. D., Luna, S. V., Lung’aho, M. G., Wenger, M. J., Murray-Kolb, L. E., & Beebe, S. (2016). Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. Journal of Nutrition,146,(8), 1586-1592. https://doi.org/10.3945/jn.115.224741
Hansel, F. D., Ruiz Diaz, D. A., Amado, T. J. C., & Rosso, L. H. M. (2017). Deep banding increases phosphorus removal by soybean grown under no-tillage production systems. Agronomy Journal, 109, 1091-1098. https://doi.org/10.2134/agronj2016.09.0533
Havlin, J. L., Beaton, J. D., Tisdale, S. L., & Nelson, W. L. (2005). Soil Fertility and Fertilizers. An Introduction to Nutrient Management, 7th edition. Pearson Prentice Hall, Upper Saddle River, NJ. 154 pp.
Hernández-López, V. M., Vargas-Vázquez, M. L. P., Muruaga-Martínez, J. S., Hernández-Delgado, S., & Mayek-Pérez, N. (2013). Origin, domestication and diversification of common beans. Advances and Perspectives. Revista Fitotecnia Mexicana, 36(2), 95-104. https://www.scielo.org.mx/pdf/rfm/v36n2/v36n2a2.pdf
Houx, J. H., Wiebold, W. J., & Fritschi, F. B. (2014). Rotation and tillage affect soybean grain composition, yield, and nutrient removal. Field Crops Research. 164, 12-21. https://doi.org/10.1016/j.fcr.2014.04.010
Hirschi, K. D. (2009). Nutrient biofortification of food crops. Annual Review of Nutrition, 29, 401-421. https://doi.org/10.1146/annurev-nutr-080508-141143
Jiang, W., Liu, X., Wang, X., & Yin, Y. (2019). Characteristics of yield and harvest index and evaluation of balanced nutrient uptake of soybean in Northeast China. Agronomy, 9, 310, 2-9. https://doi.org/10.3390/agronomy9060310
Karim, S., Jamil Uddin, F. M., Or Rashid, H. & Hadiuzzaman, M. (2020). Journal of Scientific Agriculture, 4, 108-112. http://dx.doi.org/10.25081/jsa.2020.v4.6428
Karleen, D. L., Flannery, R.L., & Sadler, E. J. (1988). Aerial accumulation and partitioning of nutrients by corn. Agronomy Journal, 80, 232-242. https://doi.org/10.2134/agronj1988.00021962008000020018x
Khazaei, H., Podder, R., Caron, C. T., Kundu, S. S., Diapari, M., Vandenberg, A., & Bett, K. E. (2017). Marker–trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome,10. https://doi.org/10.3835/plantgenome2017.02.0007
Khazaei, H. and Vandenberg, A. (2020). Seed Mineral Composition and Protein Content of Faba Beans (Vicia faba L.) with Contrasting Tannin Contents. Agronomy, 10,511, 1-10. http://dx.doi.org/10.3390/agronomy10040511
La Menza, N. C., Monzon, J. P., Specht, J. E., Lindquist, J. L., Arkebauer, T. J., & Graef, G. (2019). Nitrogen limitation in high-yield soybean: seed yield, N accumulation, and N-use efficiency. Field Crops Research, 237, 74-81. http://dx.doi.org/10.1016/j.fcr.2019.04.009
Leal, F. T., Filla, V. A., Bettiol, J. V. T., Sandrini, F. D. O. T., Mingotte, F. I. C., & Lemos, l. B. (2019). Use efficiency and responsivity to nitrogen of common bean cultivars. Ciência e Agrotecnologia, 43, e004919. http://dx.doi.org/10.1590/1413-7054201943004919
Leleji, O.I., Dickson, M. H., Crowder, L. V., & Bourke, J. B. (1972). Inheritance of crude protein percentage and its correlation with seed yield in beans, Phaseolus vulgaris L. Crop Science, 12, 168-171. https://doi.org/10.2135/cropsci1972.0011183X001200020004x
Maciel de Oliveira, S., Pierozan Junior, C., Lago, B. C., de Almeida, R. E. M., Trivelin, P. C. O., & Favarin, J. L. (2019). Grain yield, efficiency and the allocation of foliar N applied to soybean canopies. Scientia Agricola, 76(4), 305-310. http://dx.doi.org/10.1590/1678-992X-2017-0395
Machado-Silva, C. G. and Guimarães-Moreira, S. (2024). Nutrient extraction and export by determinate and indeterminate common bean cultivars. Pesquisa Agropecuaria Tropical, 54, 1-11. https://doi.org/10.1590/1983-40632024v5478404
Martínez-Meyer, M. R., Rojas, A., Santanen, A., & Stoddard, F. L. (2013). Content of zinc, iron and their absorption inhibitors in Nicaraguan common beans (Phaseolus vulgaris L.). Food Chemistry, 136, 87-93. https://doi.org/10.1016/j.foodchem.2012.07.105
Marschner, H. (2012). Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier Ltd.: Amsterdam, The Netherlands.
Mascarenhas, H. A. A., Esteves, J. A. F., Wutke, E. B., Reco, P. C., & Leão, P. C. L. (2013). Deficiência e toxicidade visuais de nutrientes em soja. Nucleus, 10, 281-306.https://doi.org/10.3738/1982.2278.974
Mesquita, F., Corrêa, A., Abreu, C., Lima, R., & Abreu, A. (2007). Linhagens de feijão (Phaseolus vulgaris L.): composição química e digestibilidade protéica, Ciência e agrotecnologia 31(4), 1114-1121. https://doi.org/10.1590/S1413-70542007000400026
Minitab, 2017. Statistical software. PA: Minitab, Inc.,
Moraghan, J.T., & Grafton, K. (2001). Genetic diversity and mineral composition of common bean seed. Journal of the science of food and Agriculture, 81, 404-408. https://doi.org/10.1002/1097-0010(200103)81:4<404::AID-JSFA822>3.0.CO;2-H
Moreira, A., and Moraes, L. A. C. (2016). Sulfur use efficiency in soybean cultivars adapted to tropical and subtropical conditions. Communications in Soil Science and Plant Analysis, 47(19), 2208-2217. https://doi.org/10.1080/00103624.2016.1228949
Moreira, A., Moraes, L. A. C., Souza, L. G. M., & Bruno, I. P. (2016). Bioavailability of nutrients in seeds from tropical and subtropical soybean varieties. Communications in Soil Science and Plant Analysis, 47, 888-898. https://doi.org/10.1080/00103624.2016.1146899
Mukankusi, C., Cowling, W. A., Siddique, K. H. Li, l., Kinghorn, B., & Rubyogo, J. C. (2020). Diversity breeding program on common bean (Phaseolus vulgaris L.) targeting rapid cooking and iron and zinc biofortification. Multidisciplinary Digital Publishing Institute Proceedings, 36 (1), e194. https://doi.org/10.3390/proceedings2019036194
Nascente, A. S. and Carvalho, M. C. S. (2018). Yield, biomass production and nutrients accumulation of super early genotype of common bean. Colloquium Agrariae, 14 (1), 101-114. https://doi.org/10.5747/ca.2018.v14.n1.a194
Nakitto, A. M., Muyona, J. H., & Nakimbungwe, D. (2015). Effects of combined processing methods on the nutritional quality of beans. Food Science & Nutrition, 3(3), 233-241. https://doi.org/10.1002/fsn3.209
Nelson, D. W., and Sommers, L. E. (1973). Total carbon. Organic carbon and organic matter. In Page, A. L. et al. (eds.) Methods of Soil Analysis, Chemical and Microbiological Properties. part 2, 2nd Eds. ASA-Soil Sci Soc Am, Madison, WI. pp. 539-579
NOM-021-RECNAT-2000. Aprobada por el Comité Consultivo Nacional de Normalización para la Conservación, Protección, Restauración y Aprovechamiento de los Recursos Forestales de Suelos y Costas. Norma Oficial Mexicana. 227 pp.
Phattarakul, N., Rerkasem, B., Li, L. J., Wu, L. H., Zou, C. Q., Ram, H., Sohu, V. S., Kang, F. S., Surek, H., & Kalayci, M. (2012). Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil, 361, 131-141. https://link.springer.com/article/10.1007/s11104-012-1211-x
Petry, N., Boy, E., Wirth, J., & Hurrell, R. (2015). The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients, 7(2), 1144-1173. https://doi.org/10.3390/nu7021144
Pottier, M., Masclaux-Daubresse, C., Yoshimoto, K., and Thomine, S. (2014). Autophagy as a possible mechanism for micronutrient remobilization from leaves to seeds. Frontiers in Plant Science, 5,11. https://doi.org/10.3389/fpls.2014.00011
Prolla, I. R. D., Barbosa, R. G., Veeck, A. P. L., August, P. R., da Silva, L. P., Ribeiro, & N. D., Emanuelli, T. (2010). Cultivar, harvest year and storage conditions affecting nutritional quality of common beans (Phaseolus vulgaris L.). Ciência e Tecnología de Alimentos. 30(1), 96-102. https://doi.org/10.1590/S0101-20612010000500016
Ramolemana, G.M. (2013). Influence of soil chemical characteristics on the nutritional value of morama (Tylosema esculentum) bean seed a potential crop in Botswana. Journal of Agricultural Science, 5(6), 185-189. http://dx.doi.org/10.5539/jas.v5n6p185
Rengel, Z. (1999). Physiological mechanisms underlying differential nutrient efficiency of crop genotypes. In Mineral Nutrition of Crops-Fundamental Mechanisms and Implications: Rengel, Z., Ed.; Food Products Press: Binghamton, NY, USA. Volume 1, 227-265 pp.
Ribeiro, N. D., Maziero, S. M., Prigol, M., Nogueira, C., Piano, D., & Possobom, M. (2012). Mineral concentrations in the embryo and seed coat of common bean cultivars, Journal of Food Composition and Analysis: 26(1), 89-95. https://doi.org/10.1016/j.jfca.2012.03.003
Rotundo, J. L., Borrás, L., de Bruin, J. D., & Pedersen, P. (2014). Soybean nitrogen uptake and utilization in Argentina and united states cultivars. Crop Science, 54, 1153-1165. https://doi.org/10.2135/cropsci2013.09.0618
Sarwar, M. A., Tahir, M., Tanveer, A., & Yaseen, M. (2016). Evaluating role of plant growth promoting rhizobacteria for improving phosphorus use efficiency and productivity in sunflower (Helianthus annuus). International Journal of Agriculture and Biology, 18, 881-888. https://doi.org/10.17957/IJAB/15.0110
Sifuentes, I. E., Macías, J., Quintana, J., & González, C. V. (2012). IrriModel 1.0: Programación integral y gestión del riego a través de internet. Folleto técnico: INIFAP-CIRNO-CEVAF. 52pp.
Silva, C. G. M. and Moreira, S. G. (2022). Nutritional demand and nutrient export by modern cultivars of common bean. Pesquisa Agropecuária Brasileira, 57, e02248. https://doi.org/10.1590/S1678-3921.pab2022.v57.02248
Smith, M. R, Veneklaas, E., Polania, J., Rao, I. M., Beebe, S. E. & Merchant, A. (2019). Field drought conditions impact yield but not nutritional quality of the seed in common bean (Phaseolus vulgaris L.). PLoS ONE 14(6), e0217099. https://doi.org/10.1371/journal.pone.0217099
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology, 156, 997-1005. https://doi.org/10.1104/pp.111.175232
Strauta, L., Muizniece-Brasava, S., & Alsina, I. (2013). Crude protein and ash content in different colored Phaseolus coccineus L. World Academy of Science, Engineering and Technology, International Journal of Nutrition and Food Engineering, 7, 696-701.
Tamagno, S., Sadras, V. O., Ortez, O. A., & Ciampitti, I. A. (2020). Allometric analysis reveals enhanced reproductive allocation in historical set of soybean varieties. Field Crops Research, 248, 107717. https://doi.org/10.1016/j.fcr.2020.107717
Tan, G. Z. H., Das Bhowmik, S. S., Hoang, T. M. L., Karbaschi, M. R., Johnson, A. A. T., & Williams, B. (2017). Finger on the pulse: pumping iron into chickpea. Frontiers in plant Science, 8, 1755. https://doi.org/10.3389/fpls.2017.01755
Tiecher, T., Calegari, A., Caner, L., Rheinheimer, D., & dos, S. 2017. Soil fertility and nutrient budget after 23-years of different soil tillage systems and winter cover crops in a subtropical Oxisol. Geoderma 308, 78-85. https://doi.org/10.1016/j.geoderma.2017.08.028
Wang, J. B., Chen, Z. H., Chen, L. J., Zhu, A. N., Wu, Z. J. 2011. Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input amounts. Plant Soil and Environment, 57(6), 251-257. https://pse.agriculturejournals.cz/pdfs/pse/2011/06/02.pdf
Westermann, D. T., Teran, H., Muñoz-Perea, C. G., & Singh, S. P. (2011). Plant and seed nutrient uptake in common bean in seven organic and conventional production systems. Canadian Journal of Plant Science, 91, 1089-1099. https://doi.org/10.4141/cjps10114
Zou, C. Q., Zhang, Y. Q., Rashid, A., Ram, H., Sohu, V., Hassan, M., Kaya, Y., Onder, O., Lungu, O., & Yagu, M. M. (2012). Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil, 361,119-130. https://link.springer.com/article/10.1007/s11104-012-1369-2
Derechos de autor 2025 Jesús del Rosario Ruelas-Islas, Celia Selene Romero-Félix, Salomón Buelna-Tarin, Cipriano Fuentes-Verduzco, Víctor Gabriel Almada-Ruiz, Cándido Mendoza-Pérez
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.
Copyright
La Revista de la Universidad del Zulia declara que reconoce los derechos de los autores de los trabajos originales que en ella se publican; dichos trabajos son propiedad intelectual de sus autores. Los autores preservan sus derechos de autoría y comparten sin propósitos comerciales, según la licencia adoptada por la revista..
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)