Adaptation and Climate Change in the Quality and Phenolic Content of Syrah and Cabernet Sauvignon Grapes

Keywords: Climate change, Agricultural production, Phenols, Mexico

Abstract

High temperatures, limited water availability, and marked thermal differences between day and night are altering the optimal conditions for grapevine development. Therefore, the objective of this study was to analyze the adaptation and impact of climate change (CC) on the quality and phenolic content of Syrah (S) and Cabernet Sauvignon (CS) grapes. A vineyard located in the El Sauz region of the state of Chihuahua, Mëxico. Meteorological variables were recorded, and the viticultural zone was characterized using the Winkler Index based on temperature data. Quality parameters such as pH, soluble solids (SS), total acidity (TA), and phenolic content were evaluated in the two grape varieties, S and CS, along with the mineral content in leaves through chromatography. The results indicated a temperature increase in July, which led to a higher evapotranspiration rate. The Syrah variety showed greater water requirements and higher levels of phenolic compounds and soluble solids. In contrast, Cabernet Sauvignon exhibited higher concentrations of macro- and microelements, along with a higher pH, indicating more acidic grapes. In conclusion, the increase in temperatures and low humidity conditions affect sugar accumulation and acidity degradation, altering the physiological processes and overall grape and wine quality.

Downloads

Download data is not yet available.

Author Biographies

Yara Nohely Moncayo Nájera, Autonomous University of Chihuahua, Mexico

Professor. Faculty of Agrotechnological Sciences. Autonomous University of Chihuahua, Mexico.

Damián Aaron Porras Flores , Autonomous University of Chihuahua, Mexico

Professor. Faculty of Agrotechnological Sciences. Autonomous University of Chihuahua, Mexico.

Esteban Sánchez Chávez , Food and Development Research Center

Center for Research in Food and Development, A.C. Chihuahua, Mexico.

Orlando Ramírez Valle, National Institute of Forestry, Agricultural and Livestock Research INIFAP

National Institute of Forestry, Agricultural and Livestock Research. La Campana Experimental Field - Sierra de Chihuahua, Mexico.

María Antonia Flores Córdova, Autonomous University of Chihuahua, Mexico

Professor. Faculty of Agrotechnological Sciences. Autonomous University of Chihuahua, Mexico.

References

Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper No. 56. FAO, Rome. Food and Agriculture Organization of the United Nations https://www.avwatermaster.org/filingdocs/195/70653/172618e_5xAGWAx8.pdf

Bloom, M., & Brundin, L. (2023). Klimatförändringens påverkan på vitikulturen i Priorat, Spanien: Vinaktörers upplevelser och klimatanpassningsstrategier [Tesis de licenciatura, Universidad de Gotemburgo]. GUPEA. https://hdl.handle.net/2077/78213

Cabello-Pasini, A., Macias-Carranza, V., & Mejía-Trejo, A. (2017). Efecto del mesoclima en la maduración de uva Nebbiolo (Vitis vinifera) en el Valle de Guadalupe, Baja California, México. Agrociencia, 51(6), 617-633. https://www.scielo.org.mx/pdf/agro/v51n6/1405-3195-agro-51-06-00617.pdf

Candar, S., Açıkbaş, B., Ekiz, M., Zobar, D., Korkutal, I., & Bahar, E. (2021). Influence of water scarcity on macronutrients contents in young leaves of wine grape cultivars. Ciência e Técnica Vitivinícola, 36(2), 104-115. https://www.ctv-jve-journal.org/articles/ctv/pdf/2021/02/ctv20213602p104.pdf

Crespo, J., Rigou, P., Romero, V., García, M., Arroyo, T., & Cabellos, J. M. (2018). Effect of seasonal climate fluctuations on the evolution of glycoconjugates during the ripening period of grapevine cv. Muscat à petits grains blancs berries. Journal of the Science of Food and Agriculture, 98(5),1803-812. https://doi.org/10.1002/jsfa.8656

Drappier, J., Thibon, C., Rabot, A., & Geny-Denis, L. (2019). Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming. Critical Reviews in Food Science and Nutrition, 59(1),14-30. https://doi.org/10.1080/10408398.2017.1355776

Ferrer, M., Echeverría, G., Pereyra, G., Salvarrey, J., Arrillaga, L., & Fourment, M. (2018). Variación del clima de un Terroir y su consecuencia sobre la respuesta de la vid. In E3S Web of Conferences, 50, 01002, 6. EDP Sciences. https://doi.org/10.1051/e3sconf/20185001002

El Rayess, Y., Nehme, N., Azzi-Achkouty, S., & Julien, S. G. (2024). Wine Phenolic Compounds: Chemistry, Functionality and Health Benefits. Antioxidants, 13(11), 1312. https://doi.org/10.3390/antiox13111312

Godoy, C. A., & Irigoyen, A. (2025). Adaptación de variedades tintas de vid a la región Mar y Sierras (provincia de Buenos Aires, Argentina) bajo un escenario de cambio climático. Agronomía &Ambiente, 44(2),35-48. http://agronomiayambiente.agro.uba.ar/index.php/AyA/article/view/268/252

Gutiérrez-Gamboa, G., Díaz-Galvéz, I., Verdugo-Vásquez, N., & Moreno-Simunovic, Y. (2019). Leaf-to-fruit ratios in Vitis vinifera L. cv. “Sauvignon blanc”, “carmenère”, “cabernet Sauvignon”, and “syrah” growing in maule valley (Chile): Influence on yield and fruit composition. Agriculture, 9(8),176. https://doi.org/10.3390/agriculture9080176

Jackson, R. S. (2020). Wine science: Principles and applications (5th ed.). Academic Press. 1014 p. ISBN 978-0-12-816118-0

Jorqueta-Fontena, E., & Orrego-Verdugo, R. (2010). Impacto del calentamiento global en la fenología de una variedad de vid cultivada en el Sur de Chile. Agrociencia, 44(4),427-435. https://www.scielo.org.mx/scielo.php?pid=S140531952010000400003&script=sci_arttext

Kennedy, J. A. (2008). Grape and wine phenolics: Observations and recent findings. Ciencia e Investigación Agraria, 35(2), 77–90. https://doi.org/10.4067/S0718-16202008000200001

Larrauri, A., Núñez, O., Hernandez-Cassou, S., & Saurina, J. (2017). Determination of polyphenols in white wines by liquid chromatography: Application to the characterization of alella (Catalonia, Spain) wines using chemometric methods. Journal of AOAC International, 100(2), 323-329. https://doi.org/10.5740/jaoacint.16-0407

Lasanta, T., Baroja-Sáenz, C., Cortijos-López, M., Nadal-Romero, E., Martín, I., & García-Escudero, E. (2022). Estrategias de adaptación al cambio climático en el viñedo de la cuenca mediterránea: el caso del Rioja. Cuadernos de Investigación Geográfica, 48(1), 133-156. https://doi.org/10.18172/cig.5062

Iland, P., Dry, P., Proffitt, T., & Tyerman, S. (2011). The grapevine: From the science to the practice of growing vines for wine. Patrick Iland Wine Promotions. 2nd Edition.429p. https://agris.fao.org/search/en/providers/122672/records/67122688e08599c663a45106

Macías Carranza, V. A. (2022). Efecto del clima sobre las propiedades fisicoquímicas de la uva para vino en Baja California, México [Tesis de Doctorado, Facultad de Ciencias Marinas, Universidad Autónoma de Baja California]. Repositorio Institucional UABC. https://repositorioinstitucional.uabc.mx/bitstream/20.500.12930/9119/1/ENS094788.pdf

Moreno-Olivares, D., Paladines-Quezada, D. F., Gimenez-Bañón, M. J., Cebrían-Pérez, A., Bleda-Sánchez, J. A., Fernández-Fernandez, J. I., & Gil-Muñoz, R. (2023). Nuevas variedades descendientes de Monastrell adaptadas al cambio climático. In BIO Web of Conferences 56, 01036, 5. EDP Sciences. https://doi.org/10.1051/bioconf/20235601036

Naulleau, A., Gary, C., Prévot, L., & Hossard, L. (2021). Evaluación de estrategias de adaptación al cambio climático en la producción de vid: una revisión sistemática. Frontiers in Plant Science, 11, 607859. https://doi.org/10.3389/fpls.2020.607859

Prieto, J. A., Bustos Morgani, M., Gómez Tournier, M., Gallo, A., Fanzone, M., Sari, S., & Pérez Peña, J. (2024). Climate change adaptations of Argentine viticulture. In G. Gutiérrez Gamboa & M. Fourment (Eds.), Latin American Viticulture Adaptation to Climate Change: Perspectives and Challenges of Viticulture Facing up to Global Warming Springer Cham. 149–169 p. https://doi.org/10.1007/978-3-031-51325-1_10

Quénol, H., Neethling, E., Barbeau, G., Tissot, C., Rouan, M., Le Coq, C., & Le Roux, R. (2023). Adapting viticulture to climate change: Guidance manual to support winegrowers’ decision-making. HAL Open Science. 40 p. https://hal.science/hal-04210610

Quezada, C., Soriano, M. A., Díaz, J., Merino, R., Chandía, A., Campos, J., & Sandoval, M. (2014). Influence of soil physical properties on grapevine yield and maturity components in an ultic palexeralf soils, Central-Southern, Chile. Open Journal of soil science, 4(04), 127. https://doi.org/10.4236/ojss.2014.44016

Ramos, M. C., & Romero, M. P. (2016). Effects of soil characteristics and leaf thinning on micronutrient uptake and redistribution in'Cabernet Sauvignon'. VITIS-Journal of Grapevine Research, 55(3), 113-120. https://doi.org/10.5073/vitis.2016.55.113-120

Romero, P., Gil-Munoz, R., del Amor, F. M., Valdés, E., Fernández, J. I., & Martinez-Cutillas, A. (2013). Regulated deficit irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agricultural Water Management, 121, 85-101. https://doi.org/10.1016/j.agwat.2013.01.007

Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2021). Handbook of Enology, volume 2: The chemistry of wine stabilization and treatments. John Wiley & Sons Ltd. 441 p. https://doi.org/10.1002/9781119584681

Ruiz-García, L., Fernández-Fernández, J. I., Martínez-Mora, C., Moreno-Olivares, J. D., Giménez-Bañón, M. J., Fernández-López, D. J., ... & Gil-Muñoz, R. (2023). Characterization of New Grapevine Varieties Cross-Bred from Monastrell, Authorized for Winemaking in the Warm Region of Murcia (South-Eastern Spain). Horticulturae, 9(7), 760. https://doi.org/10.3390/horticulturae9070760

Santander Racines, A. B., Rodríguez Santos, E. M., Toapanta Custode, C. D., & Suárez Carrillo, R. A. (2022). La Vitis vinifera, un caso de estudio en el viñedo Chaupi Estancia, provincia de Pichincha. Siembra, 9(2), 3731. https://doi.org/10.29166/siembra.v9i2.3731

Santos, J. A., Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., Dinis, L. T., Correia, C., & Moriondo, M. (2020). A review of the potential climate change impacts and adaptation options for European viticulture. Applied Sciences, 10(9), 3092. https://doi.org/10.3390/app10093092

SAS Institute Inc. (2009). SAS/STAT® 9.2 User’s Guide. SAS Institute Inc.

Valenzuela Solano, C., Ruiz Corral, J. A., Ramírez Ojeda, G., & Hernández Martínez, R. (2014). Efectos del cambio climático sobre el potencial vitícola de Baja California, México. Revista Mexicana de Ciencias Agrícolas, 5(10), 2047-2059. https://www.scielo.org.mx/pdf/remexca/v5nspe10/2007-0934-remexca-5-spe10-2047-en.pdf

Van Leeuwen, C., Roby, J. P., & De Rességuier, L. (2018). Soil-related terroir factors: A review. OENO one, 52(2), 173-188. https://doi.org/10.20870/oeno-one.2018.52.2.2208

Van Leeuwen, C., Destrac-Irvine, A., Dubernet, M., Duchêne, E., Gowdy, M., Marguerit, E., ... y Ollat, N. (2019). An update on the impact of climate change in viticulture and potential adaptations. Agronomy, 9(9), 514. https://doi.org/10.3390/agronomy9090514

Van Leeuwen, C., & Darriet, P. (2016). The impact of climate change on viticulture and wine quality. Journal of Wine Economics, 11(1), 150–167. https://doi.org/10.1017/jwe.2015.21
Published
2026-01-08
How to Cite
Moncayo Nájera, Y. N., Porras Flores , D. A., Sánchez Chávez , E., Ramírez Valle, O., & Flores Córdova, M. A. (2026). Adaptation and Climate Change in the Quality and Phenolic Content of Syrah and Cabernet Sauvignon Grapes. Journal of the University of Zulia , 17(48), 4-21. https://doi.org/10.5281/zenodo.18188442