Effect of video games training on the gross motor skills of children with cerebral palsy: systematic review and meta-analysis.

Efecto del entrenamiento con videojuegos en la motricidad gruesa de niños con parálisis cerebral: revisión sistemática y meta-análisis.

Palabras clave: entrenamiento con videojuegos, habilidades motoras gruesas, parálisis cerebral, intervención, prueba controlada aleatoria

Resumen

Este artículo intent ó evaluar sistemáticamente el efecto de la intervención del entrenamiento con videojuegos (VGT) en el desarrollo de las habilidades motoras gruesas (GMS) de niños con parálisis cerebral (CP), basándose en un cuerpo de datos logrado de las conclusiones de pruebas controladas aleatorias sobre las habilidades motoras gruesas de niños con CP, obtenidos de la búsqueda sistemática en siete bases de datos chinos y extranjeros, tales como PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang y EBSCO. El lapso de búsqueda fue desde la fecha de establecimiento de cada base de datos hasta el 16 de marzo del 2021. Se aplicó la escala PEDro para realizar un estudio cuantitativo y después, se analizaron los datos relevantes con Review Manager 5.4. Se incluyeron 13 publicaciones, 7 artículos escritos en inglés y 6 en chino. En el marco del concepto de los tres subordinados de GMS, la VGT podría mejorar significativamente la habilidad locomotora (LS) (diferencia de medias estandarizada = 0.80, intervalo de confianza del 95%: 0.55-105, P<0.00001), y las habilidades no locomotoras (NLS) (diferencia de medias estandarizada = 0.83, intervalo de confianza del 95%: 0.38-1.28, P= 0,0003) en PC; pero no hubo una diferencia significativa en las habilidades de control de objetos (OCS), cuando se compararon con el grupo control (diferencia de medias estandarizada= 0,55, intervalo de confianza del 95% -0,01-0,72, P= 0,05). En conclusión, el VGT puede mejorar las LS y NLS en CP, pero el efecto sobre OCS es incierto; por lo que se recomienda la inclusión de literatura adicional de alta calidad en el futuro. De este modo se pudo demostrar que el VGT es una herramienta de intervención eficaz en el desarrollo de las GMS en niños con CP.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Yong He Pan, Shanghai Hesheng Sports Technology Co.LTD, Shanghai, China.

Shanghai Hesheng Sports Technology Co.LTD, Shanghai, China.

Guang Feng Zhao, Shandong Sport University, Jinan, China.

Shandong Sport University, Jinan, China.

Qiang Liu, Shanghai Lixin University of Accounting and Finance, Shanghai, China.

Shanghai Lixin University of Accounting and Finance, Shanghai, China.

Sen Li, Shanghai Lixin University of Accounting and Finance, Shanghai, China.

Shanghai Lixin University of Accounting and Finance, Shanghai, China.

Citas

Li XJ, Tang JL, Ma BX, Qin J, Zou LP, Wang JQ. Definition, diagnostic criteria and clinical classification of cerebral palsy. Chin J Appl Clin Pediatr 2014; 29(19):15. http :/ / do i.o rg/ 10.3760/ j.issn.2095- 428X.2014.19.024.

Zhang YN, Chen W, Liu P, Gong ZK, Zhang M, Zhou JJ, Su C, Ma LL, Shao L, Ding WC. Effects of situational interactive intelligent walking taining on lower extremity motor function in children with spastic cerebral palsy. Chin J Rehabil 2019; 34(10):521-524. http://doi.org/10.3870/zgkf. 2019.010.004.

Kirby RS, Wingate MS, Braun KVN, Doernberg NS, Arneson CL, Benedict RE, Mulvihill B, Durkin MS, Fitzgerald RT, Maenner MJ, Patz JA, Yeargin-Allsopp M. Prevalence and functioning of children with cerebral palsy in four areas of the United States in 2006: a report from the Autism and Developmental Disabilities Monitoring Network. Res Dev Disabil 2011; 32(2):462-469. http://doi.org/ 10.1016/j.ridd.2010.12.042.

Gormley ME. Treatment of neuromuscular andmusculoskeletalproblemsincerebralpal- sy. Pediatr Rehabil 2001; 4(1): 5–16. http:// doi.org/10.1080/13638490151068393.

Bilde PE, Kliim-Due M, Rasmussen B, Petersen LZ, Nielsen JB. Individualized, home-based interactive training of cerebral palsy children delivered through the Internet. BMC Neurol 2011; 11:32-45. http://doi. org/10.1186/1471-2377-11-32.

Ren ZB, Wu JL. The effect of virtual reality games on the gross motor skills of children with cerebral palsy: A meta-analysis of randomized controlled trials. Int J Environ Res Public Health 2019; 16(20): 3885-3900.
http://doi.org/ 10.3390/ijerph16203885.

Howcroft J, Klejman S, Fehlings D, Wright V, Zabjek K, Andrysek J, Biddiss E. Active video game play in children with cerebral palsy: potential for physical activity promotion and rehabilitation therapies. Arch Phys Med Rehabil 2012; 93(8):1448-1456. http:// doi.org/10.1016/j.apmr.2012.02.033.

Massion J, Alexandrov A, Frolov A. Why and how are posture and movement coordinat- ed? Prog Brain Res 2004; 143:13–27. http:// doi.org/10.1016/S0079-6123(03)43002-1.9.

Zhang J, Lin M, Zhao GF. Research on psychological selection of paralympic shooters for the 2008 Beijing Paralympic Games. Sci Technol Inform 2008; (4):12,42. http :/ / do i.o rg/ 10.3969/ j.issn.1001- 9960.2008.04.008.

Nudo RJ. Recovery after brain injury: Mechanisms and principles. Front Hum Neurosci 2013; 7:887. http://doi.org/10.3389/ fnhum.2013.00887.

Smits-Engelsman B, Vinçon S, Blank R, Quadrado VH, Polatajko H, Wilson PH. Evaluating the evidence for motor-based interventions in developmental coordination disorder: A systematic review and meta-analysis. Res Dev Disabil 2018; 74:72-102. http://doi.org/10.1016/j.ridd. 2018.01.002

Staiano AE, Calvert SL. Review, Digital gaming and pediatric obesity: At the intersection of science and social policy. Soc Iss Policy Rev 2012; 6(1): 54-81. http://doi.org/ 10.1111/j.1751-2409.2011.01035.x

Wang L, Cai YJ, Zou J. Research progress of active video games and physical health promotion. Chin J Sport Med 2019; 38(06): 516-524. http://doi.org/10.3969/ j.issn.1000-6710.2019.06.012

Levac D, Rivard L, Missiuna C. Defining the active ingredients of interactive computer play interventions for children with neuromotor impairments: A scoping review. Res Dev Disabil 2012; 33(1):214-223. http:// doi.org/10.1016/j.ridd.2011.09.007.

Ashkenazi T, Laufer Y, Ashkenazi T, Orian D, Weiss PL. Effect of training children with Developmental Coordination Disorders in a virtual environment compared with a conventional environment. In Proceedings of the International Conference on Virtual Rehabilitation, Philadelphia, PA, USA, 26–29 August 2013.

Baranowski T, Frankel L. Let’s get technical! Gaming and technology for weight control and health promotion in children. Child Obes 2012; 8(1):34-37. http://doi. org/10.1089 /chi.2011.0103.

Salem Y, Gropack SJ, Coffin D, Godwin EM. Effectiveness of a low-cost virtual reality system for children with developmental delay: a preliminary randomised single-blind controlled trial. Physiotherapy. 2012,98(3):189–195. http://doi.org/ 10.1016/j.physio.2012.06.003.

Fehlings D, Switzer L, Findlay B, Knights S. Interactive Computer Play as “Motor Therapy” for Individuals With Cerebral Palsy. Semin Pediatr Neurol 2013; 20(2): 127-138. http:// doi.org/ 10.1016/j.spen.2013.06.003.

Ulrich DA, Sanford CB. Test of gross motor development[M]. Austin,TX: Proed, 1985.

Cohen J. Statistical power analysis for the behavioral sciences.J Am Stat Assoc 1988; 2(334):499-500 http://doi.org/
10.1016/0198-9715(90)90050-4.

Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analysis. Br Med J 2003; 327:557–560. http://doi.org/ 10.1136/bmj.327.7414.557.

Li LK, Zhang JM, Cao M, Hu WW, Zhou T, Huang T, Chen PJ, Quan MH. The effect of chronic physical activity interventions on executive function in children aged 3-7 years: A meta-analysis. J Sci Med Sport 2020; 23(10):949-954. http://doi.org/10.1016/j.jsams.2020.03.007.

Chen Y, Fanchiang HD, Ayanna H. Effectiveness of virtual reality in children with cerebral palsy: a systematic review and meta-analysis of randomized controlled trials. Phys Ther 2018; 98: 63–77. http://doi.org/ 10.1093/ptj/pzx107.

Alsaif AA, Alsenany S. Effects of interactive games on motor performance in children with spastic cerebral palsy. J Phys Ther Sci 2015; 27:2001–2003. http://doi.org/ 10.1589/jpts.27.2001.

Arnoni JLB, Pavão SL, Pereiro DSSF, Rocha NACF. Effects of virtual reality in body oscillation and motor performance of children with cerebral palsy: A preliminary randomized controlled clinical trial. Complement Ther Clin 2019; 35:189-194. http://doi. org/10.1016/j.ctcp.2019.02.014.

Chen XH, Li W, Zhang R, Liu ZS, Ming JR. Effect of Q4 Scene Interactive Training System on motor function of lower extremities in children with spastic diplegia cerebral palsy. Med Inform 2013; 26(10): 233–234. http://doi.org/10.3969/j. issn.1006-1959.2013.24.273.

Chen Z, Wang J, Wan Y. Effect of Q4 Scene Interactive Training System on stability and walking function in children with spastic cerebral palsy, Med Inform 2016; 29:114–115. http://doi.org/10.3969/j.issn.1006-1959.2016.29.081.

Chiu HC, Ada L, Lee HM. Upper limb training using Wii Sports Resort for children with hemiplegic cerebral palsy: a randomized, single-blind trial. Clin Rehabil 2014; 28(10):1015-1024. http://doi. org/10.1177/0269215514533709

Pourazar M, Bagherzadeh F, Mirakhori F. Virtual reality training improves dynamic balance in children with cerebral palsy. Int J Dev Disabil 2019; 1-6. http://doi.org/ 10.1080/20473869.2019.1679471.

Ren K, Gong XM, Zhang R, Chen XH. Effects of virtual reality training on limb movement in children with spastic diplegia cerebral palsy. Chin J Contemp Pediatr 2016; 18(10):975–979. http://doi.org/ 10.7499/j.issn.1008-8830.2016.10.011.

Rojas VG, Rebolledo GM, Munoz EG, Poblete AS, Velasquez RC, Cancino EE, Llzama EC. Does Nintendo Wii balance board improve standing balance? A randomised controlled trial in children with cerebral palsy, Eur J Phys Rehab Med 2016; 53(4):535–544. http://doi.org/:10.23736/ S1973-9087.16.04447-6.

Ürgen MS, Akbayrak T, Günel MK, Çankaya Özge, Güçhan Z, Türkyılmaz ES. Investigation of the effects of the Nintendo Wii-Fit training on balance and advanced motor performance in children with spastic hemiplegic cerebral palsy: a randomized controlled trial, Inter J Ther Rehabil Res 2016; 5(4):146–157. http://doi.org/10.5455/ijtrr.000000157.

Uysal SA, Baltaci G. Effects of Nintendo Wii training on occupational performance, balance, and daily living activities in children with spastic hemiplegic cerebral palsy: a single-blind and randomized trial. Games Health J 2016; 5(5):311–317. http://doi. org/ 10.1089/g4h.2015.0102.

Zhao XK, Zhang Y, Tang J, Wang C, Zhang L, Zhu M, Li HY, Du JS. The effect of combining constraint-induced movement therapy with virtual reality games in rehabilitating the motor function of hemiplegic children with cerebral palsy. Chin J Phys Med Rehabil 2018; 40(5):361-365. http://doi.org/10.3760/cma.j.issn.0254-1424.2018.05.012.

Zhao XK, Zhang Y, Du SJ, Zhang L, Lu F, Xuan XY. Effect of movement observation training based on somatosensory game on motor function of children with spastic cerebral palsy. Chin J Phys Med Rehabil 2018; 40(12):916-918. http://doi.org/10.3760/cma.j.issn.0254-1424.2018. 12.010.

Zeng XT, Xiong Q, Shen K. Meta-analysis series 13: Evaluation of blind methods. Chin J Evid Based Cardiovasc Med 2013; 5(4):331-333. http://doi.org/10.3969/j.1674-4055.2013.04.003.

Liu YH, Lei XM, Hu XY. Research and inspiration of active video games for autistic children abroad. Chin J Spec Educ 2015; 5:51–56. http://doi.org/10.3969/j.issn.1007- 3728.2015.05.009.

Lei XM, Liu YH, Hu XY. A Study on the application of active video games to the intervention in the motor skills of autistic children. Mod Spec Educ 2016; 20: 36–42. http://doi.org/10.3969/j.issn.1004-8014.2016.17.007.

Lu K, Han F. The application and research of VR Game design in children autistic disorder. Sci Educ Artic Collect 2018; 11: 165–166. http://doi.org/CNKI: SUN: KJXH.0.2018-11-078.

Hocking DR, Farhat H, Gavrila R, Caeyenberghs K, Shields N. Do active video games improve motor function in people with developmental disabilities? A meta-analysis of randomized controlled trials. Arch Phys Med Rehabil 2019; 100(4):769–781. http:// doi.org/ 10.1016/j.apmr.2018.10.021.

Hammond J, Jones V, Hill EL, Green D, Male I. An investigation of the impact of regular use of the Wii Fit to improve motor and psychosocial outcomes in children with movement difficulties: a pilot study. Child Care Hlth Dev 2014; 40(2):165–175. http://doi.org/ 10.1111/cch.12029.

Wuang YP, Chiang CS, Su CY, Wang CC. Effectiveness of virtual reality using Wii gaming technology in children with Down syndrome. Res Dev Disabil 2011; 32(1): 312-321. http://doi.org/ 10.1016/j. ridd.2010.10.002.

Page ZE, Barrington S, Edwards J, Barnett LM. Do active video games benefit the motor skill development of non-typically developing children and adolescents:a systematic review. J Sci Med Sport 2017; 20(12):1087–1100. http://doi.org/10.1016/j.jsams. 2017.05.001.

Wilson PH, Smits-Engelsman B, Caeyenberghs K, Steenbergen B, Sugden DA, Clark JE. Cognitive and neuroimaging findings in developmental coordination disorder: new insights from a systematic review of recent research. Dev Med Child Neurol 2017; 59(11): 1117-1129. http://doi.org/10.1111/dmcn.13530.

Wang M, Reid D. Virtual reality in pediatric neurorehabilitation: attention deficit hyperactivity disorder, autism and cerebral palsy. Neuroepidemiology 2011; 36:2–18. http://doi.org/10.1159/000320847.

Sahin S, Köse B, Aran OT, Bahadir Z, Kayıhan H. The effects of virtual reality on motor functions and daily life activities in unilateral spastic cerebral palsy: A single-blind randomized controlled trial. Games Health J 2019; 9(1): 45-52. http://doi.org/ 10.1089/g4h.2019.0020.

Zhao GF. Research on the technique of arm swing in sprint. Sci Educ 2010; (9):196-197. http://doi.org/CNKI:SUN:KJ DK.0.2010-09- 112.

Lewis CL, Fragala-Pinkham MA. Effects of aerobic conditioning and strength training on a child with Down Syndrome: A case study. Pediatr Phys Ther 2005; 17(1): 30-6. http://doi.org/ 10.1097/01. PEP.0000154185.55735.A0.

Lin HC, Wuang YP. Strength and agility training in adolescents with Down syndrome: A randomized controlled trial. Res Dev Disabil 2012; 33(6): 2236-2244. http://doi. org/ 10.1016/j.ridd.2012.06.017.

Lee HY, Cherng RJ, Lin CH. Development of a virtual reality environment for somato-sensory and perceptual stimulation in the balance assessment of children. Comput Biol Med 2004; 34(8): 719-733. http://doi. org/ 10.1016/j.compbiomed.2003.10.004.

Bouisset S, Do MC. Posture, dynamic stability, and voluntary movement. Neurophysiol Clin 2009; 38(6): 345-362. http://doi.org/10.1016/j.neucli. 2008.10.001.

Cho C, Hwang W, Hwang S, Chung YJ. Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku J Exp Med.2016; 238(3):213-228. http://doi. org/ 10.1620/tjem.238.213.
Publicado
2022-05-30
Cómo citar
He Pan, Y., Feng Zhao, G., Liu, Q., & Li, S. (2022). Effect of video games training on the gross motor skills of children with cerebral palsy: systematic review and meta-analysis.: Efecto del entrenamiento con videojuegos en la motricidad gruesa de niños con parálisis cerebral: revisión sistemática y meta-análisis. Investigación Clínica, 63(2), 185-201. https://doi.org/10.54817/IC.v63n2a08