Effects of focused ultrasound on human cervical cancer HeLa cells in vitro.

Efectos del ultrasonido focalizado sobre células HeLa de cáncer cervical humano in vitro.

Palabras clave: ultrasonido focalizado, cáncer de cuello uterino, línea celular HeLa, efectos in vitro

Resumen

El carcinoma de cuello uterino es el cuarto tumor maligno más común en las mujeres. Muchos estudios han verificado que el parto prematuro, la prolificidad, la infección por VPH y fumar son algunos de los factores de riesgo. El propósito de este artículo fue investigar los efectos del tratamiento con diferentes intensidades de ultrasonido focalizado sobre células HeLa de cáncer de cuello uterino humano in vitro. Este estudio utilizó tres grupos de células HeLa: 1- un grupo de tratamiento con alta intensidad, 2- un grupo de tratamiento con baja intensidad y 3- un grupo control. Los resultados mostraron que después de 12 horas de tratamiento con ultrasonido focalizado, la tasa de inhibición del crecimiento del grupo de baja intensidad fue 55,6% más elevada que la del grupo control y la tasa de inhibición del crecimiento del grupo de alta intensidad fue 41,2% más elevada que la del grupo de baja intensidad. Por lo tanto, el ultrasonido focalizado tiene un efecto inhibitorio sobre el crecimiento de células HeLa, y cuanto mayor sea la intensidad del ultrasonido focalizado, más elevada será la tasa de inhibición de las células cancerosas. Además, los valores del Umbral de Ciclos [Cycle Threshold (Ct)] de los tres grupos de células eran los mismos antes del tratamiento, pero estos valores tuvieron cambios evidentes después del tratamiento. El valor del Ct del grupo de baja intensidad fue 18,1% inferior al del grupo de control y el valor del Ct del grupo de alta intensidad fue 27,8% más bajo que el del grupo de baja intensidad; lo que demuestra que el ultrasonido focalizado puede reducir la actividad de las células HeLa in vitro.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Yanbin Liu, Beihua University, Jilin, China.

Department of Ultrasound Diagnosis, Affiliated Hospital of Beihua University, Jilin, China.

Qun Zhao, Hospital of Beihua University, Jilin, China.

Department of Cardiovascular Medicine (Group 1, 4th Treatment Area), Affiliated Hospital of Beihua University, Jilin, China.

Panpan Liu, Qingdao Huangdao District Traditional Chinese Medicine Hospital, Qingdao, China.

Department of Ultrasonic Medicine, Qingdao West Coast New Area Traditional Chinese Medicine Hospital (Qingdao Huangdao District Traditional Chinese Medicine Hospital), Qingdao, China.

Yanbin Li, Qingdao Huangdao District Traditional Chinese Medicine Hospital, Qingdao, China.

Department of Ultrasonic Medicine, Qingdao West Coast New Area Traditional Chinese Medicine Hospital (Qingdao Huangdao District Traditional Chinese Medicine Hospital), Qingdao, China.

Li’an Yi, Qingdao Huangdao District Traditional Chinese Medicine Hospital, Qingdao, China.

Department of Health Management Section, Qingdao West Coast New Area Traditional Chinese Medicine Hospital (Qingdao Huangdao District Traditional Chinese Medicine Hospital), Qingdao, China.

Haiping Yan, Qingdao Huangdao District Traditional Chinese Medicine Hospital, Qingdao, China.

Department of Health Management Section, Qingdao West Coast New Area Traditional Chinese Medicine Hospital (Qingdao Huangdao District Traditional Chinese Medicine Hospital), Qingdao, China.

Citas

Hu B, Luo W, Zhang M, Zhao X, Yang L, Wang Y. Effects of dexmedetomidine on hemodynamics, stress response, lung compliance, and oxygenation index in laparoscopic patients with cervical cancer. Acta Medica Mediterr 2022; 38(3): 2141-2145. https://doi.org/10.19193/0393-6384_ 2022_3_327.

Mohamed Saleh Omar Korbag S, Mohamed Saleh Omar Korbag I. A new study biological role of hpv infection, oral contraceptive use, sex hormones and bisphenol A and increase rate cancer of cervical in libya. J Med Chem Sci 2020; 3(4): 354-362. https://doi.org/10.26655/JMCHEM-SCI.2020.4.5.

Zhou Y, Gao XW. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHI- FU). Phys Med Biol 2016; 61(18): 6651-6667. https://doi.org/10.1088/0031-9155/61/18/6651.

Zhang Y, Ji X, Gu S, Wu H, Fu B. The correlation between HPV 16 e6 and e7 proteins and telomerase expression in cervical cancer carcinogenesis. Acta Medica Mediterr 2022; 38(2): 831-836. https://doi.org/10.19193/0393-6384_2022_2_126.

Jalil AT, Mohammad WT, Karevskiy A, Dilfy SH. Histological diagnosis and staging of cervical cancer samples collected from women in Dhi-Qar Province. J Med Chem Sci 2023; 6(2): 269-279.https://doi.org/10.26655/JMCHEMSCI.2023.2.9.

Zhang L, Liu L, Huang Y, Tuo Y, Song J. Relationship between single nucleotide polymorphism of dna repair genes ercc1 and ercc2 and cervical cancer susceptibility. Acta Medica Mediterr 2021; 37(6): 3013-
3017. https://doi.org/10.19193/0393-6384_2021_6_472.

Soetrisno S, Ismarwati I, Nurinasari H. The effectiveness of community development model by using Whatsapp toward old women behavior in early detection of cervical cancer. J Med Chem Sci 2021; 4(4): 341-350. https://doi.org/10.26655/JMCHEMSCI.2021.4.5.

Liu NN, Khoo BC, Zhang AM. Study on the structure and behaviour of cavitation bubbles generated in a high-intensity focused ultrasound (HIFU) field. Eur Phys J E 2019; 42(6): 1-13. https://doi.org/10.1140/epje/i2019-11833-8.

Mai X, Chang Y, You Y, He L, Chen T. Designing intelligent nano-bomb with on-demand site-specific drug burst release to synergize with high-intensity focused ultrasound cancer ablation. J Control Release 2021; 331: 270-281. https://doi. org/10.1016/j.jconrel.2020.09.051.

Zhu L, Huang Y, Lam D, Gach HM, Zoberi I, Hallahan DE, Grigsby PW, Chen H, Altman MB. Targetability of cervical cancer by magnetic resonance-guided high- intensity focused ultrasound (MRgHIFU)- mediated hyperthermia (HT) for patients receiving radiation therapy. Int J Hyperth 2021; 38(1): 498-510. https://doi.org/10.1080/02656736.2021.1895330.

Imankulov S, Baygenzhin A, Rustemova K, Tashev I, Fedotovskikh G, Shaimardanova G, Zhampeissov N, Erlan M. The impact of high-intensity focused ultrasound on the hydatid Echinococcus Cyst (Experiment in vitro). Int J Adv Res 2016; 4(10): 372-382. https://doi.org/10.21474/IJAR01/1801.

Hong L, Guo Z, Xing W, Yu H, Liu Ch, Yang X, Wang H. Effects of high-intensity focused ultrasound on apoptosis-associated gene expression in xenografts with human pancreatic cancer. Natl Med J China 2017; 97(9): 694-697. https://doi.org/10.3760/cma.j.issn.0376.2491.2017.09.013.

Yuan SM, Li H, Yang M, Zha H, Sun H, Li XR, Li AF, Gu Y, Duan L, Luo JY, Li CY, Wang Y, Wang ZB, He TC, Zhou L. High intensity focused ultrasound enhances anti-tumor immunity by inhibiting the negative regulatory effect of miR-134 on CD86 in a murine melanoma model. Oncotarget 2015; 6(35): 37626-37637. https://doi.org/10.18632/oncotarget.5285.

Dosanjh A, Harvey P, Baldwin S, Mintz H, Evison F, Gallier S, Trudgill N, James ND, Sooriakumaran P, Patel P. High-intensity focused ultrasound for the treatment of prostate cancer: A national cohort study focusing on the development of stricture and fistulae - ScienceDirect. Eur Urol Focus 2021; 7(2): 340-346. https://doi.org/10.1016/j.euf.2019.11.014.

Childers C, Edsall C, Gannon J, Whittington AR, Muelenaer AA, Rao J, Vlaisavljevich E. Focused ultrasound biofilm ablation: investigation of histotripsy for the treatment of catheter-associated urinary tract infections (CAUTIs). IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021; 68(9): 2965-2980. https://doi.org/10.1109/TUFFC.2021.3077704.

Lee YY, Cho YJ, Choi JJ, Choi CHm, Kim TJ, Kim BG, Bae DS, Kim YS, Lee JW. The effect of high-intensity focused ultrasound in combination with cisplatin using a xenograft model of cervical cancer. Anticancer Res 2012; 32(12): 5285-5289.

Abel M, Ahmed H, Leen E, Park E, Chen M, Wasan H, Price P, Monzon L, Gedroyc W, Abel P. Ultrasound-guided trans-rectal high-intensity focused ultrasound (HIFU) for advanced cervical cancer ablation is feasible: A case report. J Ther Ultrasound 2015; 3(1): 1-4. https://doi.org/10.1186/s40349-015-0043-6.

Frenzel A, Grespi F, Chmelewskij W, Villunger A. Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis 2009; 14(4): 584-596. https://doi.org/10.1007/s10495-008-0300-z.

Zhao LW, Zhong XH, Yang SY, Zhang YZ, Yang NJ. Inotodiol inhabits proliferation and induces apoptosis through modulating expression of cyclinE, p27, bcl-2, and bax in human cervical cancer HeLa cells. Asian Pacific J Cancer Prev 2014; 15(7): 3195-3199. https://doi.org/10.7314/APJCP.2014.15.7.3195.

Hsiao YH, Kuo SJ, Tsai H Der, Chou MC, Yeh GP. Clinical application of high-intensity focused ultrasound in cancer therapy. J Cancer 2016; 7(3): 225-231. https://doi. org/10.7150/jca.13906.

Tang F, Zhong Q, Ni T, Chen Y, Liu Y, Wu J, Feng Z, Lu X, Tan S, Zhang Yu. Salvage high-intensity focused ultrasound for residual or recurrent cervical cancer after definitive chemoradiotherapy. J Clin Oncol 2022; 40(16_suppl): e17524-e17524. https://doi.org/10.1200/jco.2022.40.16_ suppl.e17524.
Publicado
2023-11-20
Cómo citar
Liu, Y., Zhao, Q., Liu, P., Li, Y., Yi, L., & Yan, H. (2023). Effects of focused ultrasound on human cervical cancer HeLa cells in vitro.: Efectos del ultrasonido focalizado sobre células HeLa de cáncer cervical humano in vitro. Investigación Clínica, 64(4), 441-450. https://doi.org/10.54817/IC.v64n4a1
Sección
Trabajos Originales