Eficiência biológica e avaliação de compostos bioativos de cepas selvagens mexicanas de Hericium erinaceus
Resumo
O basidiomiceto Hericium erinaceus é um dos cogumelos comestíveis e medicinais mais consumidos no mundo e apreciado na medicina tradicional chinesa, sendo conhecido no México como juba de leão. Foi avaliada a eficiência biológica de cepas selvagens de H. erinaceus cultivadas em diferentes substratos na região de Durango, principalmente bagaço de agave, resíduo da produção de mezcal. A cepa CCH003 de Espinazo del diablo apresentou a maior eficiência biológica de 42,33 % e produtividade de 0,47 %, com período total de cultivo de 90 dias e três colheitas. Quanto à avaliação de compostos bioativos, a mesma cepa obteve diferenças significativas em relação às demais, apresentou os maiores valores para todas as determinações; 60 ± 0,018 mg EAG.g ES-1 em conteúdo fenólico, 4,21 ± 0,013 mg EQ.g ES-1 para flavonóides, 71,16 ± 0,002 mg EAA.g ES-1 em CAT, 157 ± 0,089 µg EAG.mL-1 pela ABTS e 121 ± 0,107 µg EAG.mL-1 pela DPPH. A variabilidade dos resultados nos testes realizados fornece informações sobre como o tipo de substrato, as condições climatológicas e geográficas e o estágio de maturidade influenciam o desenvolvimento do fungo, incluindo a produção de metabólitos secundários, mesmo tratando-se da mesma espécie. Espera-se que estas informações sejam úteis para promover a utilização do bagaço de agave como substrato no cultivo de H. erinaceus e assim diversificar as atividades rurais na região, e futuramente gerar novos estudos sobre o efeito das condições na produção de compostos bioativos.
Downloads
Referências
Beelman, R. B., Royse, D. J. & Chikthimmah, N. (2003). Bioactive components in button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae) of nutritional, medicinal, and biological importance. International Journal of Medicinal Mushrooms, 5, 461–466DOI:10.1615/InterJMedicMush.v5.i4.10 Charumathy, M., Sudha, G., & Packialakshmi, B. (2016). Detection of antioxidant activity and bioactive constituents in the fruiting bodies of Hericium erinaceus pers-an edible mushroom. International Journal of Pharmacy and Pharmacy and Pharmaceutical Sciences, 8(3), 152-156.
https://journals.innovareacademics.in/index.php/ijpps/article/view/10017/3945
Colavolpe, M. B., Mejía, S. J., & Albertó, E. (2014). Efficiency of treatments for controlling Trichoderma spp. during spawning in cultivation of lignicolous mushrooms. Brazilian Journal of Microbiology, 45(4), 1263-1270. https://www.scielo.br/j/bjm/a/FG7Sj73DgSgRHThRsWtk8qh/?format=pdf&lang=en
Hassan, F. R. H. (2007). Cultivation of the monkey head mushroom (Hericium erinaceus) in Egypt. Journal of Applied Sciences Research, 3(10), 1229-1233. https://www.researchgate.net/profile/Fathy-Hassan-2/publication/332247554_Cu_lti_vati_on_of_th_e_Mon_k_ey_Hea_d_Mu_sh_ro_om_Hericium_erinaceus_in_Egypt/links/5ca91adea6fdcca26d045484/Cu-lti-vati-on-of-th-e-Mon-k-ey-Hea-d-Mu-sh-ro-om-Hericium-erinaceus-in-Egypt.pdf
Karadžić, D. (2006). Contribution to the study of fungi in the genera Sparassis Fr. and Hericium Pers. in our forests. Glasnik Šumarskog Fakulteta, 93, 83-96. https://agris.fao.org/search/en/providers/122436/records/64747f1679cbb2c2c1b82ce0
Kim, M. Y., Seguin, P., Ahn, J. K., Kim, J. J., Chun, S. C., Kim, E. H., & Ro, H. M. (2008). Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. Journal of Agricultural and Food Chemistry, 56(16), 7265-7270. https://doi.org/10.1021/jf8008553
Kosanić, M., Ranković, B., & Dašić, M. (2012). Mushrooms as possible antioxidant and antimicrobial agents. Iranian Journal of Pharmaceutical Research, 11(4), 1095-1102. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813146/
Kozarski, M., Klaus, A., Jakovljevic, D., Todorovic, N., Vunduk, J., Petrović, P., & Van Griensven, L. (2015). Antioxidants of edible mushrooms. Molecules, 20(10), 19489-19525. https://doi.org/10.3390/molecules201019489
Li, H., Park, S., Moon, B., Yoo, Y. B., Lee, Y. W., & Lee, C. (2012). Targeted phenolic analysis in Hericium erinaceus and its antioxidant activities. Food Science and Biotechnology, 21(3), 881-888. https://doi.org/10.1007/s10068-012-0114-1
Nieto, I. J., and Chegwin, C. (2010). Influencia del sustrato utilizado para el crecimiento de hongos comestibles sobre sus características nutraceúticas. Revista Colombiana de Biotecnología, 12(1), 169-178. http://www.scielo.org.co/pdf/biote/v12n1/v12n1a16.pdf
Nurmi, K., Ossipov, V., Haukioja, E., & Pihlaja, K. (1996). Variation of total phenolic content and low-molecular-weight phenolics in foliage of the mountain birch trees (Betula pubescens ssp. tortuosa). Journal of Chemical Ecology, 22, 2023–2040. https://doi.org/10.1007/BF02040093
Omarini, A., Lechner, B. E., & Albertó, E. (2009). Polyporus tenuiculus: a new naturally occurring mushroom that can be industrially cultivated on agricultural waste. Journal of Industrial Microbiology and Biotechnology, 36(5), 635-642. https://doi.org/10.1007/s10295-009-0530-2
Páez-Olivan, L. A., Correa-Ramírez, M., Guzmán-Dávalos, L., Naranjo-Jiménez, N., Almaraz-Abarca, N., Ávila-Reyes, J. A., Herrera-Gamboa J., Rosas Medina I., González- Valdez L. S., & Torres-Ricario, R. (2022). Studies of morphological and genetic variability of Hericium erinaceus from the Northwest area of the Sierra Madre Occidental, Durango, Mexico. The Southwestern Naturalist, 66(3), 225-232. https://doi.org/10.1894/0038-4909-66.3.225
Prieto, P., and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of Vitamin E. Analytical Biochemestry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019
Puttaraju, N. G., Venkateshaiah, S. U., Dharmesh, S. M., Urs, S. M. N., & Somasundaram, R. (2006). Antioxidant activity of indigenous edible mushrooms. Journal of Agricultural and Food Chemistry, 54(26), 9764-9772. https://doi.org/10.1021/jf0615707
Quiñónez-Martínez, M., Ruan-Soto, F., Aguilar-Moreno, I. E., Garza-Ocañas, F., Lebgue-Keleng, T., Lavín-Murcio, P. A., & Enríquez-Anchondo, I. D. (2014). Knowledge and use of edible mushrooms in two municipalities of the Sierra Tarahumara, Chihuahua, Mexico. Journal of Ethnobiology and Ethnomedicine, 10, 1-13. https://doi.org/10.1186/1746-4269-10-67
Rani, P., Lal, M. R., Maheshwari, U., & Krishnan, S. (2015). Antioxidant potential of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes) cultivated on Artocarpus heterophyllus sawdust substrate in India. International Journal of Medicinal Mushrooms, 17(12), 1171-1177. DOI: 10.1615/intjmedmushrooms.v17.i12.70
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Sobieralski, K., Wojnilowicz, M., Siwulski M. (2009). Comparison of mycelium growth and yielding of selected strains of Hericium erinaceus (Bull. Fr.) Pers. on sawdust substrates with the glucose addition. Herba Polonica, 55(3): 266-272. https://herbapolonica.pl/resources/html/article/details?id=606245
Smolskaitė, L., Venskutonis, P. R., & Talou, T. (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Science and Technology, 60(1), 462-471 https://doi.org/10.1016/j.lwt.2014.08.007
Stamets, P., and Chilton, J. S. (1983). The mushroom cultivator: a practical guide to growing mushroom at home. First Washington. No. 589.1 S8.
Tello-Balderas, J. J., and García-Moya, E. (1988). El maguey (Agave, subgénero Agave en el altiplano potosino-zacatecano). Boletín de la Sociedad Botánica de México, 48, 119-134. https://www.botanicalsciences.com.mx/index.php/botanicalSciences/article/view/1350/1001
Vaca-Paulín, R., Lugo de la Fuente, J., & Esteller Alberich, M. V. (2006). Caracterización de la materia orgánica soluble y de los ácidos húmicos en suelo acondicionado con lodo residual fresco o compostado. Revista Internacional de Contaminación Ambiental, 22(1), 27-37. https://www.scielo.org.mx/pdf/rica/v22n1/0188-4999-rica-22-01-27.pdf
Wilkinson, R. E., and Kasperbauer, M. J. (1972). Epicuticular alkane content of tobacco as influenced by photoperiod, temperature, and leaf age. Phytochemistry, 11(8), 2439-2442. https://doi.org/10.1016/S0031-9422(00)88513-1
Woisky, R. G., and Salatino, A. (1998). Analysis of propolis: some parameters and procedures for chemical quality control. Journal of Apicultural Research, 37(2), 99- 105. https://doi.org/10.1080/00218839.1998.11100961
Wootton-Beard, P. C., Moran, A., & Ryan, L. (2011). Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Research International, 44(1), 217-224. https://doi.org/10.1016/j.foodres.2010.10.033
Xu, B. J., and Chang, S. K. C. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2), S159-S166. https://doi.org/10.1111/j.1750-3841.2006.00260.x
Direitos de Autor (c) 2024 Laura Anabel Páez-Olivan, Carmen Zulema Quiñones Pérez, Néstor Naranjo Jiménez, René Torres Ricario, Miguel Correa-Ramírez, Jaime Herrera Gamboa
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.