Identificação e caracterização morfológica de actinomicetos marinhos como agentes de biocontrole de Fusarium solani em tomate
Resumo
Fusarium spp. danifica as raízes das lavouras, seu controle é feito com fungicidas sintéticos, no entanto, os actinomicetos marinhos podem ser uma alternativa ao uso de agroquímicos. O objetivo deste trabalho foi a identificação e caracterização morfológica de actinomicetos marinhos como antagonistas a Fusarium solani (Mart.) Sacc. Fusarium spp. foi isolado a partir de tomateiros doentes e actinomicetos de sedimento de manguezais, ambos foram identificados por meio de chaves taxonômicas e técnicas moleculares. Foram obtidos oito isolados de Fusarium spp., sendo H8 o mais virulento e identificado como F. solani. Foram isolados 30 actinomicetos, dos quais apenas quatro inibiram o fitopatógeno, sendo A19 o que inibiu o fungo em 70% e foi identificado como Streptomyces sp. Os actinomicetos marinhos podem ser uma alternativa efetiva para o manejo de doenças em plantas de interesse agrícola.
Downloads
Referências
Al-Fadhal, F. A., AL-Abedy, A. N. and Alkhafije, D. A. (2019). Isolation and molecular identification of Rhizoctonia solani and Fusarium solani isolated from cucumber (Cucumis sativus L.) and their control feasibility by Pseudomonas fluorescens and Bacillus subtilis. Egyptian Journal of Biological Pest Control, 29(1), 1-11. https://doi.org/10.1186/s41938-019-0145-5
Ameen, F., AlNadhari, S. and Al-Homaidan, A. A. (2021). Marine microorganisms as an untapped source of bioactive compounds. Saudi Journal of Biological Sciences, 28(1), 224-231. https://doi.org/10.1016/j.sjbs.2020.09.052
Azadeh, B. F., Sariah, M. and Wong, M. Y. (2010). Characterization of Burkholderia cepacia genomovar I as a potential biocontrol agent of Ganoderma boninense in oil palm. African Journal of Biotechnology, 9(24), 3542-3548.
Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H. P., Clément, C., Ouhdouch, Y. and van Wezel, G. P. (2016). Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews: MMBR, 80(1), 1-43. https://doi.org/10.1128/MMBR.00019-15
Benhadj, M., Gacemi-Kirane, D., Menasria, T., Guebla, K. and Ahmane, Z. (2019). Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara Lake, northeastern Algeria) for hydrolytic enzymes and antimicrobial activities. Journal of King Saud University-Science, 31(4), 706-712. https://doi.org/10.1016/j.jksus.2018.03.008
Chang, X., Dai, H., Wang, D., Zhou, H., He, W., Fu, Y., Ibrahim, F., Zhou, Y., Gong, G., Shang, J., Yang, J., Wu, X., Yong, T., Song, C. and Yang, W. (2018). Identification of Fusarium species associated with soybean root rot in Sichuan Province, China. European Journal of Plant Pathology, 151(3), 563-577. https://doi.org/10.1007/s10658-017-1410-7
Chen, Z., Ou, P., Liu, L. and Jin, X. (2020). Anti-MRSA activity of actinomycin X2 and collismycin a produced by Streptomyces globisporus WA5-2-37 from the intestinal tract of American cockroach (Periplaneta americana). Frontiers in Microbiology, 11, 555. https://doi.org/10.3389/fmicb.2020.00555
Choi, H. W., Hong, S. K., Lee, Y. K., Kim, W. G. and Chun, S. (2018). Taxonomy of Fusarium fujikuroi species complex associated with bakanae on rice in Korea. Australasian Plant Pathology, 47(1), 23-34. https://doi.org/10.1007/s13313-017-0536-6
Clarridge, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews, 17(4), 840-862. https://doi.org/10.1128/CMR.17.4.840-862.2004
Duarte Leal, Y., Echevarría Hernández, A. y Martínez Coca, B. (2016). Identificación y caracterización de aislamientos de Fusarium spp. presentes en garbanzo (Cicer arietinum L.) en Cuba. Revista de Protección Vegetal, 31(3), 173-183. https://cutt.ly/qnva8A5
Duraipandiyan, V., Sasi, A. H., Islam, V. I. H., Valanarasu, M. and Ignacimuthu, S. (2010). Antimicrobial properties of actinomycetes from the soil of Himalaya. Journal de Mycologie Medicale, 20(1), 15-20. https://doi.org/10.1016/j.mycmed.2009.11.002
Gadhave, A. D., Patil, P. D., Dawale, M. B., Suryawnshi, A. P., Joshi, M. S. and Giri, V. V. (2020). In-vitro Evaluation of different fungicides and bioagents against Fusarium oxysporum f. sp. lycopersici. International Journal of Current Microbiology and Applied Sciences, 9(8), 3576-3584. https://doi.org/10.20546/ijcmas.2020.908.412
Gong, B., Chen, S., Lan, W., Huang, Y. and Zhu, X. (2018). Antibacterial and antitumor potential of actinomycetes isolated from mangrove soil in the Maowei Sea of the southern coast of China. Iranian Journal of Pharmaceutical Research, 17(4), 1339-1346. https://doi.org/10.22037/ijpr.2018.2280
Gopalakrishnan, S., Srinivas, V., Naresh, N., Pratyusha, S., Ankati, S., Madhuprakash, J., Govindaraj, M. and Sharma, R. (2021). Deciphering the antagonistic effect of Streptomyces spp. and host-plant resistance induction against charcoal rot of sorghum. Planta, 253(2), 1-12. https://doi.org/10.1007/s00425-021-03577-5
Goudjal, Y., Toumatia, O., Yekkour, A., Sabaou, N., Mathieu, F. and Zitouni, A. (2014). Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiological Research, 169(1), 59-65. https://doi.org/10.1016/j.micres.2013.06.014
Igarashi, M., Sawa, R., Umekita, M., Hatano, M., Arisaka, R., Hayashi, C., Ishizaki, Y., Suzuki, M. and Kato, C. (2021). Sealutomicins, new enediyne antibiotics from the deep-sea actinomycete Nonomuraea sp. MM565M-173N2. Journal of Antibiotics, 74, 291-299. https://doi.org/10.1038/s41429-020-00402-1
Intra, B., Mungsuntisuk, I., Nihira, T., Igarashi, Y. and Panbangred, W. (2011). Identifcation of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease. BMC Research Notes, 4, 98. https://doi.org/10.1186/1756-0500-4-98
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. https://doi.org/10.1093/molbev/msy096
Li, Y. T., Hwang, S. G., Huang, Y. M. and Huang, C. H. (2018). Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection, 110, 275-282. https://doi.org/10.1016/j.cropro.2017.03.021
Ling, L., Han, X., Li, X., Zhang, X., Wang, H., Zhang, L., Cao, P., Wu, Y., Wang, X., Zhao, J. and Xiang, W. (2020). A Streptomyces sp. NEAU-HV9: Isolation, identification, and potential as a biocontrol agent against Ralstonia solanacearum of tomato plants. Microorganisms, 8(3), 351. https://doi.org/10.3390/microorganisms8030351
Maluin, F. N. and Hussein, M. Z. (2020). Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules, 25(7), 1611. https://doi.org/10.3390/molecules25071611
Marlatt, M. L., Correll, J. C., Kaufmann, P. and Cooper, P. E. (1996). Two genetically distinct populations of Fusarium oxysporum f. sp. lycopersici race 3 in the United States. Plant Disease, 80(12), 1336-1342. https://doi.org/10.1094/PD-80-1336
Murugan, L., Krishnan, N., Venkataravanappa, V., Saha, S., Mishra, A. K., Sharma, B. K. and Rai, A. B. (2020). Molecular characterization and race identification of Fusarium oxysporum f. sp. lycopersici infecting tomato in India. 3 Biotech, 10, 486. https://doi.org/10.1007/s13205-020-02475-z
Nirmaladevi, D., Venkataramana, M., Srivastava, R. K., Uppalapati, S. R., Gupta, V. K., Yli-Mattila, T., Tsui, K. M., Srinivas, C., Niranjana, S. R. and Chandra, N. S. (2016). Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Scientific Reports, 6(1), 1-14. https://doi.org/10.1038/srep21367
Ochoa, J. L., Hernández-Montiel, L. G., Latisnere-Barragán, H., León de La Luz, J. L. and Larralde-Corona, C. P. (2007). Isolation and identification of pathogenic fungi from orange Citrus sinensis L. Osbeck cultured in Baja California Sur, México. Ciencia y Tecnología Alimentaria, 5(5), 352-359. https://doi.org/10.1080/11358120709487712
Okubara, P. A., Schroeder, K. L. and Paulitz, T. C. (2005). Real-time polymerase chain reaction: applications to studies on soilborne pathogens. Canadian Journal of Plant Pathology, 27(3), 300-313. https://doi.org/10.1080/07060660509507229
Palla, M. S., Guntuku, G. S., Muthyala, M. K. K., Pingali, S. and Sahu, P. K. (2018). Isolation and molecular characterization of antifungal metabolite producing actinomycete from mangrove soil. Beni-Suef University Journal of Basic and Applied Sciences, 7(2), 250-256. https://doi.org/10.1016/j.bjbas.2018.02.006
Rathore, D. S., Sheikh, M., Gohel, S. and Singh, S. P. (2019). Isolation strategies, abundance and characteristics of the marine actinomycetes of Kachhighadi, Gujarat, India. Journal of the Marine Biological Association of India, 61(1), 71-78. http://dx.doi.org/10.6024/jmbai.2019.61.1.2028-11
Reyes-Pérez, J. J., Luna-Murillo, R. A., Reyes-Bermeo, M. R., Vázquez-Morán, V. F., Zambrano-Burgos, D. y Torres-Rodríguez, J. A. (2018). Efecto de los abonos orgánicos sobre la respuesta productiva del tomate (Solanum lycopersicum L). Revista de la Facultad de Agronomía de la Universidad del Zulia, 35(1), 26-39. https://cutt.ly/bnvsmtW
Roncero, M. I., Di Pietro, A., Ruiz-Roldán, M. C., Huertas-González, M. D., Garcia-Maceira, F. I., Méglecz, E., Jiménez, A., Caracuel, Z., Sancho-Zapatero, R., Hera, C., Gómez-Gómez, E., Ruiz-Rubio, M., González-Verdejo, C. I. and Páez, M. J. (2000). Role of cell wall-degrading enzymes in pathogenicity of Fusarium oxysporum. Revista Iberoamericana de Micología, 17(1), S47-53.
Sangkanu, S., Rukachaisirikul, V., Suriyachadkun, C. and Phongpaichit, S. (2017). Evaluation of antibacterial potential of mangrove sediment-derived actinomycetes. Microbial Pathogenesis, 112, 303-312. https://doi.org/10.1016/j.micpath.2017.10.010
Saravanakumar, K., Yu, C., Dou, K., Wang, M., Li, Y. and Chen, J. (2016). Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biological Control, 94, 37-46. https://doi.org/10.1016/j.biocontrol.2015.12.001
Shen, T., Lei, Y., Pu, X., Zhang, S. and Du, Y. (2021). Identification and application of Streptomyces microflavus G33 in compost to suppress tomato bacterial wilt disease. Applied Soil Ecology, 157, 103724. https://doi.org/10.1016/j.apsoil.2020.103724
Shirling, E. B. and Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic and Evolutionary Microbiology, 16(3), 313-340. https://doi.org/10.1099/00207713-16-3-313
Singha, I. M., Kakoty, Y., Unni, B. G., Das, J. and Kalita, M. C. (2016). Identification and characterization of Fusarium sp. using ITS and RAPD causing fusarium wilt of tomato isolated from Assam, North East India. Journal of Genetic Engineering and Biotechnology, 14(1), 99-105. https://doi.org/10.1016/j.jgeb.2016.07.001
Sivakumar, T., Balabaskar, P. and Sanjeevkumar, K. (2018). Variability in Fusarium oxysporum f. sp. lycopersici causing wilt of tomato. International Journal of Chemical Studies, 6(2), 3655-3659. https://cutt.ly/bnvsBL6
Soldan, R., Mapelli, F., Crotti, E., Schnell, S., Daffonchio, D., Marasco, R., Fusi, M., Borin, S. and Cardinale, M. (2019). Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiological Research, 223, 33-43. https://doi.org/10.1016/j.micres.2019.03.008
Summerell, B. A., Salleh, B. and Leslie, J. F. (2003). A utilitarian approach to Fusarium identification. Plant Disease, 87(2), 117-128. https://doi.org/10.1094/PDIS.2003.87.2.117
Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution, 9(4), 678-687. https://doi.org/10.1093/oxfordjournals.molbev.a040752
Torres-Rodriguez, J. A., Reyes-Pérez, J. J., Castellanos, T., Angulo, C., Quiñones-Aguilar, E. E. and Hernandez-Montiel, L. G. (2021). A biopolymer with antimicrobial properties and plant resistance inducer against phytopathogens: Chitosan. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 1-15. https://doi.org/10.15835/nbha49112231
Vurukonda, S. S. K. P., Giovanardi, D. and Stefani, E. (2018). Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. In International Journal of Molecular Sciences, 19(4), 952. https://doi.org/10.3390/ijms19040952
Wang, X., Zhang, M., Gao, J., Pu, T., Bilal, M., Wang, Y. and Zhang, X. (2018). Antifungal activity screening of soil actinobacteria isolated from Inner Mongolia, China. Biological Control, 127, 78-84. https://doi.org/10.1016/j.biocontrol.2018.07.007
White, T. J., Bruns, T., Lee, S. and Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Innis, M.A., D.H. Gelfand, J. J. Sninsky and T.J. White (Ed.), PCR protocols: a guide to methods and applications, (Vol. 18, pp. 315-322). Academic Press,1990. Inc. New York. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Direitos de Autor (c) 2022 Juan Antonio Torres-Rodriguez, Juan José Reyes-Pérez, Thelma Castellanos, Carlos Angulo, Evangelina Esmeralda Quiñones-Aguilar y Luis Guillermo Hernandez-Montiel
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.