Respostas morfológicas e fisiológicas de duas espécies de Capsicum (Capsicum annuum L. y Capsicum chinense Jacq.) sob condições de déficit de água
Resumo
A seca e a escassez de água, efeitos das mudanças climáticas em curso, são as principais limitações na produção agrícola. Nesse sentido, o presente trabalho visa comparar as diferenças nas respostas morfológicas e nas relações hídricas entre locais, cultivares de Capsicum annuum L. e Capsicum chinense Jacq sob condições de déficit hídrico. Após 20 dias do transplante e manutenção adequada de irrigação e fertilização, plantas de quatro local cultivares (2 de C. annuum and 2 de C. chinense) foram submetidas a dois tratamentos: déficit hídrico de 14 dias sem irrigação e plantas irrigadas a cada três dias, em um delineamento de blocos ao acaso. Foram avaliados o conteúdo relativo de água (RWC), o volume da raiz, a área foliar, a área foliar específica e o peso seco dos diferentes órgãos e concentração de nitrogênio na folha. Os resultados mostraram que, em condições de déficit hídrico, as plantas de C. annuum e C. chinense diminuem o RWC na folha, no volume das raízes, no crescimento total e na concentração de nitrogênio na folha. No caso de C. annuum, o déficit hídrico afetou a produção, que variou entre as cultivares. Parece que a mobilização de fotoassimilados para os frutos é uma estratégia para uma maior produção de C. annuum como demonstrado pelo cultivar ECU-2254b, porém foi a cultivar que apresentou o menor RWC em ambas as condições de disponibilidade hídrica. A cultivar de C. chinense ECU-2241, apresentou melhor tolerância ao déficit hídrico por apresentar maior crescimento radicular e maior RWC.
Downloads
Referências
Campos, H., Trejo, C., Peña-Valdivia, C. B., García-Nava, R., Conde-Martínez, F. V., & Cruz-Ortega, M. R. (2014). Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environmental and experimental botany,98,56-64. www.sciencedirect.com/science/article/pii/S0098847213001706
Dorji, K., Behboudian, M H.,& ZegbeJ. A. (2005). Water relations,growth, yield and fruit quality of hot pepper under deficit irrigation and partial rootzone drying. Scientia Horticulturae, 104(2), 137-149 https://doi.org/10.1016/j.scienta.2004.08.015
FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). (2021). FAOSTATS. Producción, exportaciones e importaciones mundiales de chiles y pimientos secos y verdes por países. http://www.fao.org/faostat/.
González-Dugo, V., Orgaz, F., & Fereres, E. (2007). Responses of pepper to deficit irrigation for paprika production. Scientia Horticulturae, 114(2), 77-82. https://doi.org/10.1016/j.scienta.2007.05.014
Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental biology,419(1), 64-77. https://doi.org/10.1016/j.ydbio.2016.07.023
Hernandez-Espinoza, L. H., & Barrios-Masias, F. H. (2020). Physiological and anatomical changes in tomato roots in response to low water stress. Scientia Horticulturae, 265, 109208. https://doi.org/10.1016/j.scienta.2020.109208
Ismail, S. M. (2010). Influence of deficit irrigation on water use efficiency and bird pepper production (Capsicum annuum L.). Meteor. Environ. Arid Land Agric. Sci, 21(2) 29-43 https://doi.org/https://10.4197/Met.21-2.3
Jaimez, R. (2000). Dinámica de crecimiento y distribución de materia seca en ají dulce (Capsicum chinense Jacq) bajo condiciones de déficit de agua. Agronomía Tropical, 50(2), 189-200.
Jaimez, R. E., & Rada, F. (2016). Gas exchange, growth, flowering and fruit production in sweet pepper (Capsicum chinense jacq) along a thermal gradient determined by altitudinal differences in a tropical region. Experimental Agriculture, 52(2), 251-265. https://doi.org/10.1017/S0014479715000071
Jaimez, R. E., Rada, F., & Garcia-Núnez, C. (1999). The effect of irrigation frequency on water and carbon relations in three cultivars of sweet pepper (Capsicum chinense Jacq), in a tropical semiarid region. Scientia Horticulturae, 81(3), 301-308. https://doi.org/10.1016/S0304-4238(99)00017-5
Jaimez, R. E., Vielma, O., Rada, F., & García‐Núñez, C. (2000). Effects of WD on the dynamics of flowering and fruit production in Capsicum chinense Jacq in a tropical semiarid region of Venezuela. Journal of Agronomy and Crop Science, 185(2), 113-119. https://doi.org/10.1046/j.1439-037x.2000.00414.x
Kweku, D., Bismark, O., Maxwell, A., Desmond, K., Danso, K., Oti-Mensah, E., Quachie, A., & Adormaa, B. (2018). Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. Journal of Scientific Research and Reports, 17(6), 1-9. https://doi.org/10.9734/JSRR/2017/39630
Konapala, G., Mishra, A.K., Wada, Y. & Mann, M. (2020) Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications 11, 3044 https://doi.org/10.1038/s41467-020-16757-w
Lawlor, D. W., & Tezara, W. (2009). Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of botany, 103(4), 561-579. https://doi.org/https://doi.org/10.1093/aob/mcn244
Loor, H. V. & Muñoz S. 2019 Caracterización morfológica de las accesiones del germoplasma de Capsicum del Instituto Nacional de Investigaciones Agropecuarias Tesis Ingeniería Agronómica. Universidad Técnica de Manabí 56 p.
Macias-Bobadilla, I., Vargas-Hernandez, M., Guevara-Gonzalez, R. G., Rico-Garcia, E., Ocampo-Velazquez, R. V, & Torres-Pacheco, I. (2020). Differential Response to WD in Chili Pepper (Capsicum annuum L.) Growing in Two Types of Soil Under Different Irrigation Regimes. Agriculture, 10(9), 381. https://doi.org/10.3390/agriculture10090381
Mardani, S., Tabatabaei, S. H., Pessarakli, M., & Zareabyaneh, H. (2017). Physiological responses of pepper plant (Capsicum annuum L.) to drought stress. Journal of Plant Nutrition,40(10),1453-1464. https://doi.org/10.1080/01904167.2016.1269342
Martinez-Acosta, E., Lagunes-Espinoza, L. C., Castelán-Estrada, M., Lara-Viveros, F., & Trejo, C. (2020). Leaf gas exchange and growth of Capsicum annuum var. glabriusculum under conditions of flooding and WD. Photosynthetica, 58(3), 873-880. https://doi.org/10.32615/ps.2020.032
May-Lara, C., Pérez-Gutiérrez, A., Ruiz-Sánchez, E., Ic-Caamal, A. E., & García-Ramírez, A. (2011). Efecto de niveles de humedad en el crecimiento y potencial hídrico de Capsicum chinense Jacq. y su relación con el desarrollo de Bemisia tabaci Genn. Tropical and subtropical agroecosystems, 14(3), 1039-1045.
Okunlola, G. O., Olatunji, O. A., Akinwale, R. O., Tariq, A., & Adelusi, A. A. (2017). Physiological response of the three most cultivated pepper species (Capsicum spp.) in Africa to drought stress imposed at three stages of growth and development. Scientia Horticulturae,224,198-205. https://doi.org/10.1016/j.scienta.2017.06.020
Potters, G., Pasternak, T. P., Guisez, Y., Palme, K. J., & Jansen, M. A. K. (2007). Stress-induced morphogenic responses: growing out of trouble? Trends in plant science, 12(3), 98-105. https://doi.org/10.1016/j.tplants.2007.01.004
Sanders G.J., Arndt, S.K. (2012) Osmotic Adjustment Under Drought Conditions. In: Aroca, R. (eds) Plant Responses to Drought Stress. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_8
Serret, M. D., Yousfi, S., Vicente, R., Piñero, M. C., Otálora-Alcón, G., Del Amor, F. M., & Araus, J. L. (2018). Interactive effects of CO2 concentration and water regime on stable isotope signatures, nitrogen assimilation and growth in sweet pepper. Frontiers in plant science, 8, 2180. https://doi.org/https://doi.org/10.3389/fpls.2017.02180
Vashi, H. D., Patel, P. P., & Bardhan, K. (2020). Growth and physiological responses of vegetable crops to WD stress. Journal of Experimental Agriculture International, 91-101. https://doi.org/10.9734/jeai/2020/v42i530523
Wang, H., Sánchez-Molina, J. A., Li, M., Berenguel, M., Yang, X. T., & Bienvenido, J. F. (2017). Leaf area index estimation for a greenhouse transpiration model using external climate conditions based on genetics algorithms, back-propagation neural networks and nonlinear autoregressive exogenous models. Agricultural Water Management,183,107-115. https://doi.org/10.1016/j.agwat.2016.11.021
Yang, H., Liu, H., Zheng, J., & Huang, Q. (2018). Effects of regulated deficit irrigation on yield and water productivity of chili pepper (Capsicum annuum L.) in the arid environment of Northwest China. Irrigation science, 36(1), 61-74. https://doi.org/https://doi.org/10.1007/s00271-017-0566-4
Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez‐Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia plantarum, 162(1), 2-12. https://doi.org/10.1111/ppl.12540
Direitos de Autor (c) 2022 Luis F. Fernández-Zambrano, Liliana Corozo Quiñonez, Álvaro Monteros Altamirano, Francisco Arteaga Alcívar y Ramón E. Jaimez
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.