Actividad PGPR de bacterias solubilizadoras de carbón

Palabras clave: rizobacterias promotoras de crecimiento vegetal, fijación de nitrógeno, AIA, solubilización de fosfatos, solubilización bacteriana de carbón

Resumen

Las bacterias solubilizadoras de carbón (BSC) son microorganismos capaces de biotransformar carbones de bajo rango, liberando en el proceso materia orgánica humificada y se ha reportado que estas bacterias podrían promover el crecimiento de las plantas. El objetivo de este trabajo fue evaluar la capacidad Plant Growth Promoting Rhizobacteria (PGPR) de cinco cepas de BSC: Bacillus pumilus (BSC05), B. mycoides (BSC25), Microbacterium sp. (BSC3), Acinetobacter sp. (BSC13) y B. amyloliquefaciens (BSC02). Para esto, fueron evaluados los rasgos PGPR en condiciones de laboratorio: la capacidad de fijación biológica de nitrógeno, la reducción del acetileno, la producción de ácido indol acético (AIA) y la solubilización de fosfatos. En un segundo experimento, en condiciones de casa de malla, se evaluó actividad PGPR de la cepa BSC05 en plantas de frijol común. En condiciones de laboratorio se evidenció que todas las cepas evaluadas produjeron AIA, solubilizaron fosfato en medio líquido, presentaron capacidad de fijación de nitrógeno atmosférico, y solo las cepas de BSC3 y BSC13 redujeron el acetileno. En el experimento en casa malla, se observó actividad PGPR de la cepa BSC05 en plantas de fríjol común, reflejado en incrementos en la altura de estas plantas. Estos resultados muestran que las BSC son promisorias en la actividad PGPR, lo cual resulta de gran interés en el desarrollo de insumos biológicos con aplicaciones agrícolas y ambientales, para el manejo y producción de cultivos en suelos perturbados del Caribe seco colombiano influenciados por la actividad minera.

Descargas

La descarga de datos todavía no está disponible.

Citas

Acuña, A., Pucci, G.N. and Pucci, O.H. (2010). Caracterización de tres cepas bacterianas capaces de fijar nitrógeno y biodegradar hidrocarburos aisladas de un suelo de la Patagonia. Ecosistemas, 19(2), 125-136. https://revistaecosistemas.net/index.php/ ecosistemas/article/view/392
Ansari, F. A., Ahmad, I. and Pichtel, J. (2019). Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Applied Soil Ecology, 143, 45-54. https://doi.org/10.1016/j.apsoil.2019.05.023
Araújo, W. L., Marcon, J., Maccheroni Jr, W., Van Elsas, J. D., Van Vuurde, J. W. and Azevedo, J. L. (2002). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology, 68(10), 4906-4914. https://journals.asm.org/doi/10.1128/AEM.68.10.4906-4914.2002
Castagno, L. N., Estrella, M. J., Sannazzaro, A. I., Grassano, A. E. and Ruiz, O. A. (2011). Phosphate‐solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). Journal of Applied Microbiology, 110(5), 1151-1165. https://doi.org/10.1111/j.1365-2672.2011.04968.x
Corrales-Ramírez, L., Caycedo-Lozano, L., Gómez-Méndez, M., Ramos-Rojas, S. and Rodríguez-Torres, J. (2017). Bacillus sp.: una alternativa para la promoción vegetal por dos caminos enzimáticos. NOVA, 15(27), 45 - 65. https://doi.org/10.22490/24629448.1958
Cubillos-Hinojosa, J. G., Valero, N. O. and Melgarejo, L. M. (2015). Assessment of a low rank coal inoculated with coal solubilizing bacteria as an organic amendment for a saline-sodic soil. Chemical and Biological Technologies in Agriculture, 2(1), 1-10. https://doi.org/10.1186/s40538-015-0048-y
De-Bashan, L. E., Hernandez, J. P., Bashan, Y. and Maier, R. M. (2010). Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environmental and Experimental Botany, 69(3), 343-352. https://doi.org/10.1016/j.envexpbot.2010.04.014
Dobereiner, J., Marriel, I. E. and Nery, M. (1976). Ecological distribution of Spirillum lipoferum Beijerinck. Canadian Journal of Microbiology, 22(10), 1464-1473. https://doi.org/10.1139/m76-217
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, Article 96340. https://doi.org/10.6064/2012/963401
Hardy, R. W., Holsten, R. D., Jackson, E. K., & Burns, R. (1968). The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiology, 43(8), 1185-1207.
Idris, E. E., Iglesias, D. J., Talon, M., and Borriss, R. (2007). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20(6), 619-626. https://doi.org/10.1094/MPMI-20-6-0619
Kloepper, J. W., Lifshitz, R. and Zablotowicz, R. M. (1989). Free-living bacterial inocula for enhancing crop productivity. Trends in Biotechnology, 7(2), 39-44. https://doi.org/10.1016/0167-7799(89)90057-7
Kumari, P., Meena, M. and Upadhyay, R. S. (2018). Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatalysis and Agricultural Biotechnology, 16, 155-162. https://doi.org/10.1016/j.bcab.2018.07.029
Lalloo, R., Maharajh, D., Görgens, J., Gardiner, N. and Görgens, J. F. (2009). High-density spore production of a B. cereus aquaculture biological agent by nutrient supplementation. Applied microbiology and biotechnology, 83(1), 59-66. https://doi.org/10.1007/s00253-008-1845-z
Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Tripathi, Y. N., Zehra, A., Marwal, A. and Upadhyay, R. S. (2020). PGPR‐mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. Journal of Basic Microbiology, 60(10), 828-861. https://doi.org/10.1002/jobm.202000370
Mirza, B. S., and Rodrigues, J. L. (2012). Development of a direct isolation procedure for free-living diazotrophs under controlled hypoxic conditions. Applied and Environmental Microbiology, 78(16), 5542-5549. https://doi.org/10.1128/AEM.00714-12
Naveed, M., Qureshi, M. A., Zahir, Z. A., Hussain, M. B., Sessitsch, A., and Mitter, B. (2015). L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN. Annals of Microbiology, 65(3), 1381-1389. https://doi.org/10.1007/s13213-014-0976-y
Pantoja-Guerra, M., Ramirez-Pisco, R. and Valero-Valero, N. (2019). Improvement of mining soil properties through the use of a new bio-conditioner prototype: a greenhouse trial. Journal of Soils and Sediments, 19(4), 1850-1865. https://doi.org/10.1007/s11368-018-2206-x
Pérez, A. and Chamorro, L. (2013). Bacterias endófitas: un nuevo campo de investigación para el desarrollo del sector agropecuario. Revista Colombiana de Ciencia Animal, 5(2), 439-462. https://doi.org/10.24188/recia.v5.n2.2013.457
Ramírez, L.C.C., Galvez, Z.Y.A. and Burbano, V.E.M. (2014). Solubilización de fosfatos: una función microbiana importante en el desarrollo vegetal. Nova, 12(21). https://doi.org/10.22490/24629448.997
Ren, J. H., Li, H., Wang, Y. F., Ye, J. R., Yan, A. Q., and Wu, X. Q. (2013). Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biological Control, 67(3), 421-430. https://doi.org/10.1016/j.biocontrol.2013.09.012
Spaepen, S., Bossuyt, S., Engelen, K., Marchal, K., and Vanderleyden, J. (2014). Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin‐producing bacterium Azospirillum brasilense. New Phytologist, 201(3), 850-861. https://doi.org/10.1111/nph.12590
Tejera-Hernández, B., Rojas-Badía, M. M. and Heydrich-Pérez, M. (2011). Potencialidades del género Bacillus en la promoción del crecimiento vegetal y el control biológico de hongos fitopatógenos. Revista CENIC. Ciencias Biológicas, 42(3), 131-138. https://www.redalyc.org/pdf/1812/181222321004.pdf
Tejera-Hernández, B., Heydrich-Pérez, M. and Rojas-Badía, M. M. (2013). Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del arroz. Agronomía Mesoamericana, 24(2), 357-364. https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1659-13212013000200012
Titilawo, Y., Masudi, W. L., Olawale, J. T., Sekhohola-Dlamini, L. M. and Cowan, A. K. (2020). Coal-Degrading Bacteria Display Characteristics Typical of Plant Growth Promoting Rhizobacteria. Processes, 8(9), 1111. https://doi.org/10.3390/pr8091111
Valero, N.V., Salazar, L.N., Gómez, S.M., and Bayona L.C. (2012). Obtención de bacterias biotransformadoras de carbón de bajo rango a partir de microhábitats con presencia de residuos carbonosos. Acta Biológica Colombiana, 17(2), 335-347. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-548X2012000200009
Valero, N., Gómez, L., Pantoja, M. and Ramírez, R. (2014). Production of humic substances through coal-solubilizing bacteria. Brazilian Journal of microbiology, 45(3), 911-918. https://www.scielo.br/j/bjm/a/4q4nM5DZZXMTdhBBKMCVJLP/?format=pdf&lang=en
Valero, N., Melgarejo, L. M. and Ramírez, R. (2016). Effect of low-rank coal inoculated with coal solubilizing bacteria on edaphic materials used in post-coal-mining land reclamation: a greenhouse trial. Chemical and Biological Technologies in Agriculture, 3(1), 1-10. https://doi.org/10.1186/s40538-016-0068-2
Valero, N. O., Salgado, J. A. and Bastidas, M. J. (2018). Carbones de bajo rango como recurso para enmiendas húmicas mediante transformación microbiana. Información tecnológica, 29(5), 315-324. http://dx.doi.org/10.4067/S0718-07642018000500315
Publicado
2022-06-14
Cómo citar
Brito-Campo, H., Ayala-Santamaría, M., Barros-Escalante, K., Cubillos-Hinojosa, J., Pantoja-Guerra, M., Osvaldo Valero, N., & Gómez Gómez, L. (2022). Actividad PGPR de bacterias solubilizadoras de carbón. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 39(2), e223932. Recuperado a partir de https://produccioncientificaluz.org/index.php/agronomia/article/view/38266
Sección
Ambiente