AI-based Deep Soil Moisture Prediction to Assess Past and Future Consistency of NOAA Data

Keywords: deep soil moisture content, soil properties, artificial intelligence

Abstract

Accurate deep soil moisture modeling is essential for agriculture, especially in regions with unpredictable precipitation impacting crop health and yield. Understanding these dynamics is crucial for assessing drought vulnerability and promoting sustainable agricultural practices. This study evaluated the consistency of NOAA climate data over five years using an AI-developed deep soil moisture model. The objectives were to assess historical and future NOAA data reliability and predict soil moisture at 40 cm and 100 cm depths in Panama’s western region. The CNN-BiLSTM regression model integrated meteorological and soil property data (clay, silt, sand) from NOAA and the International Soil Reference and Information Centre. It transformed data into spatial and temporal features, with training, validation, and testing sets using 2021 data. The generalization capability of the model was assessed using data from 2019, 2020, 2022, and 2023, validating predictions with two preceding and two subsequent years. Results show the 40 cm model achieved MAE, RMSE, MAPE, and R2 of 0.007112 m3.m-3, 0.012662 m3.m-3, 3.55 %, and 0.97, respectively. The 100 cm model recorded 0.011019 m3.m-3, 0.017334 m3.m-3, 4.92 %, and 0.95, respectively. The model demonstrated coherence over five years, confirming NOAA data consistency.

Downloads

Download data is not yet available.

References

Basir, M., Noel, S., Buckmaster, D., & Ashik-E-Rabbani, M. (2024). Enhancing subsurface soil moisture forecasting: A long short-term memory network model using weather data. Agriculture, 14(3), 333. https://doi.org/10.3390/agriculture14030333
Filipović, N., Brdar, S., Mimić, G., Marko, O., & Crnojević, V. (2022). Regional soil moisture prediction system based on long short-term memory network. Biosystems Engineering, 213, 30-38. https://doi.org/10.1016/j.biosystemseng.2021.11.019
Fischler, M., & Bolles, R. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communication of the ACM, 24(6), 381-395. https://doi.org/10.1145/358669.358692
Geng, Q., Yan, S., Li Q., & Zhang, C. (2024). Enhancing data-driven soil moisture modeling with physically-guided LSTM networks. Frontiers in Forests and Global Change, 7, 1-12. https://doi.org/10.3389/ffgc.2024.1353011
Han, H., Choi, C., Kim, J., Morrison, R., Jung, J., & Kim, H. (2021). Multiple-Depth soil moisture estimates using artificial neural network and long short-term memory models. Water, 13(8), 2584. https://doi.org/10.3390/w13182584
Ministerio de Ambiente de Panamá. (2020). Cuarta comunicación nacional sobre cambio climático de Panamá ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC). Ministerio de Ambiente; Programa de las Naciones Unidas para el Desarrollo. https://transparencia-climatica.miambiente.gob.pa/wp-content/uploads/2023/08/4CNCC_2023_L.pdf
Munro, R., Lyons, W. F., Shao, Y., Wood, M., Hood, L. M., & Leslie, L. (1998). Modeling land surface-atmosphere interactions over the Australian continent with an emphasis on the role of soil moisture. Environmental Modeling and Software, 13(3-4), 333-339. https://doi.org/10.1016/s1364-8152(98)00038-3
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N., Zsoter, E., Buontempo, C., & Thépaut, J. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9), 4349-4383. https://doi.org/10.5194/essd-13-4349-2021
National Centers for Environmental Prediction. (2015). NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. rda.ucar.edu at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D65Q4T4Z
O'Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., & others. (2019). KerasTuner [Software]. GitHub. https://github.com/keras-team/keras-tuner
Pan, F., Nieswiadomy, M., & Shuan, Q. (2015). Application of a soil moisture diagnostic equation for estimating root-zone soil moisture in arid and semi-arid regions. Journal of Hydrology, 524, 296-310. https://doi.org/10.1016/j.jhydrol.2015.02.044
Poggio, L., de Sousa, L., Batjes, N., Heuvelink, G., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL, 7(1), 217-240. https://doi.org/10.5194/soil-7-217-2021
Thenkabail, P., Knox, J., Ozdogan, M., Gumma, M., Congalton, R., Wu, Z., Milesi, C., Finkral, A., Marshall, M., Mariotto, I., You, S., Giri, C., & Nagler, P. (2016). NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Dominance 2010 Global 1 km V001 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD1KCD.001
Tong, Y., Wang, Y., Song, Y., Sun, H., Sun, H., & Xu, Y. (2020). Spatiotemporal variations in deep soil moisture and its response to land-use shifts in the Wind-Water erosion crisscross region in the critical zone of the loess Plateau (2011-2015), China. Catena, 193, 104643. https://doi.org/10.1016/j.catena.2020.104643
Wang, A., Liu, B., Wang, Z., & Liu, G. (2016). Monitoring and predicting the soil water content in the deeper soil profile of loess Plateau, China. International Soil and Water Conservation Research, 4(1), 6-11. https://doi.org/10.1016/j.iswcr.2016.02.001
Yu, J., Tang, S., Zhangzhong, L., Zheng, W., Huang, C., Wang, L., Wong, A., & Xu, L. (2020). A deep learning approach for multi-depth soil water content prediction in summer maize growth period. IEEE Access, 8, 199097-199110. https://doi.org/10.1109/access.2020.3034984
Published
2025-12-11
How to Cite
Montilla, G., Villazana, S., Torres, V., Pérez, E., Reverón, H., & Seijas, C. (2025). AI-based Deep Soil Moisture Prediction to Assess Past and Future Consistency of NOAA Data. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 42(4), e254257. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/44898
Section
Crop Production