Morphological response of native maize (Zea mays L.) seedlings to contrasting nitrogen environments

  • Jenaro Reyes-Matamoros Centro de Investigación en Ciencias Agrícolas. Benemérita Universidad Autónoma de Puebla (BUAP). Av. 14 Sur 6301, CU, Col. San Manuel, C.P. 72570, Puebla, Pue., México. https://orcid.org/0000-0003-0078-7221
  • Marco Mora-Ramírez Facultad de Ciencias Químicas, BUAP. Edificio FCQ 5, CU, Col. San Manuel, C.P. 72570, Puebla, Pue., México. https://orcid.org/0000-0003-4155-8978
  • Ivan Morales-Manzo Centro de Investigación en Ciencias Agrícolas. Benemérita Universidad Autónoma de Puebla (BUAP). Av. 14 Sur 6301, CU, Col. San Manuel, C.P. 72570, Puebla, Pue., México. https://orcid.org/0009-0005-9983-3436
  • Antonio Valderrama-Romero Estación Experimental Agraria Chincha. Instituto Nacional de Innovación Agraria (INIA). Carretera Panamericana Sur km 200.5, Chincha, Departamento de Ica, Perú. https://orcid.org/0000-0003-1137-3649
Keywords: cereals, nitrogen use efficiency, root architecture, native varieties

Abstract

Nitrogen plays a vital role in plant metabolism, influencing growth and development, particularly in crops like maize (Zea mays L.). This study aimed to evaluate the morphological response of maize seedlings to different nitrogen levels. The design was a completely randomized factorial arrangement of 4 x 2, involving four maize cultivars and two nitrogen levels.The variety Sb 302 Berentsen and three native varieties originating from Tecamachalco, Puebla, Mexico were studied. For a period of 14, 21, 28 and 35 days, seedlings were grown in nutrient solution with 10 % and 100 % nitrogen levels under hydroponic conditions. The results revealed significant variability in seedling morphology, particularly in root architecture and dry weight, between the 10 % and 100 % nitrogen treatments. High coefficients of variation were observed in the lengths of crown and seminal roots, alongside significant correlations between root and seedling dry weights at both nitrogen levels. Additionally, a strong correlation was found between root length and number under the 10 % nitrogen treatment. The results highlight the critical role of nitrogen in maize seedling development and the interaction between nitrogen concentration and maize variety, particularly in primary root length. The study improves understanding of nitrogen's role in optimizing maize growth and suggests strategies to enhance nitrogen use efficiency across different maize varieties.

Downloads

Download data is not yet available.

References

Abdel-Ghani, A.H., Bharath, K., Reyes-Matamoros, J., Gonzalez-Portilla, P.J., Jansen, C., San Martin, J.P., Lee, M., & Lübberstedt, T. (2013). Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels. Euphytica, 189, 123-133. DOI 10.1007/s10681-012-0759-0

Asibi, A.E., Chai, Q., & Coulter, J.A. (2019). Mechanisms of nitrogen use in maize. Agronomy, 9, 775. DOI: https://doi.org/10.3390/agronomy9120775

Barrios, M., García, J., & Basso, C. (2012). Efecto de la fertilización nitrogenada sobre el contenido de nitrato y amonio en el suelo y la planta de maíz. Bioagro, 24(3), 213-220.

Blanco L, Uhart, S., Andrade, F., Echeverría, H., & Sainz, H. (2004). Componentes del rendimiento en el cultivo del maíz (Zea mays) ante diferentes dosis de nitrógeno. Centro Agrícola, 31(1-2), 36-40. http://cagricola.uclv.edu.cu/descargas/pdf/V31-Numero_1y2/cag091041352.pdf

Hoagland, D.R., & Arnon, D.I. (1950). The water-culture method for growing plants without soil. California, Agricultural Experiment Station. Circular. 347, 32 p. https://www.nutricaodeplantas.agr.br/site/downloads/hoagland_arnon.pdf

Hochholdinger, F., Marcon, C., Baldauf, J.A., Yu, P., & Frey, F.P. (2018). Proteomics of maize root development. Frontiers in Plant Science, 9, 143. DOI: https://doi.org/10.3389/fpls.2018.00143

Hokam, E.M., El-Hendawy, S.E., and Schmidhalter, U. (2011). Drip irrigation frequency: the effects and their interaction with nitrogen fertilization on maize growth and nitrogen use efficiency under arid conditions. Agronomy and Crop Science, 197, 186–201. DOI: http://dx.doi.org/10.1111/j.1439-037X.2010.00460.x

Kumar, B., Abdel-Ghani, A.H., Reyes-Matamoros, J., Hochholdinger, F., & Lübberstedt, T. (2012). Genotypic variation for root architecture traits in seedlings of maize (Zea mays L.) inbred lines. Plant Breeding, 131(4), 465-478. DOI: 10.1111/j.1439-0523.2012.01980.x

Li, Q., Wu, Y., Chen, W., Jin, R., Kong, F., Ke, Y., Shi, H., & Yuan, J. (2017). Cultivar differences in root nitrogen uptake ability of maize hybrids. Frontiers in Plant Science, 8, 1060. DOI: https://doi.org/10.3389/fpls.2017.01060

Liu, Z., Gao, K., Shan, S., Gu, R., Wang, Z., Craft, E.J., & Chen, F. (2017). Comparative analysis of root traits and the associated QTLs for maize seedlings grown in paper roll, hydroponics and vermiculite culture system. Frontiers in Plant Science, 8, 436. DOI: https://doi.org/10.3389/fpls.2017.00436

Maqbool, S., Hassan, M.A., Xia, X., York, L.M., Rasheed, A., & He, Z. (2022). Root system architecture in cereals: progress, challenges and perspective. The Plant Journal, 110(1), 23-42. DOI: https://doi.org/10.1111/tpj.15669

Martínez-Dalmau, J., Berbel, J., & Ordóñez-Fernández, R. (2021). Nitrogen fertilization. A review of the risks associated with the inefficiency of its use and policy responses. Sustainability, 13(10), 5625. https://doi.org/10.3390/ su13105625

Mu, X., & Chen, Y. (2021). The physiological response of photosynthesis to nitrogen deficiency. Plant Physiology and Biochemistry, 158, 76-82. DOI: https://doi.org/10.1016/j.plaphy.2020.11.019

Noor, M.A. (2017). Nitrogen management and regulation for optimum NUE in maize–A mini review. Cogent Food & Agriculture, 3(1), 1348214. DOI: https://doi.org/10.1080/23311932.2017.1348214

Pace, J., Lee, N., Naik, H.S., Ganapathysubramanian, B., & Lubberstedt, T. (2014). Analysis of maize (Zea mays L.) seedling roots with the high throughput image analysis tool ARIA (automatic root image analysis). PLoS ONE, 9, e108255. DOI: https://doi.org/10.1371/journal.pone.0108255

Schneider, H.M., Yang, J.T., Brown, K.M., & Lynch, J.P. (2021). Nodal root diameter and node number in maize (Zea mays L.) interact to influence plant growth under nitrogen stress. Plant Direct, 5(3), e00310. DOI: https://doi.org/10.1002/pld3.310

Wang, Y., Mi, G., Chen, F., Zhang, J., & Zhang, F. (2005). Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize. Journal of Plant Nutrition, 27(12), 2189–2202. DOI: https://doi.org/10.1081/PLN-200034683

Woll, K., Borsuk, L., Stransky, H., Nettleton, D., Schnable, P.S., & Hochholdinger, F. (2005). Isolation characterization and pericycle specific transcriptome analyses of the novel maize (Zea mays L.) lateral and seminal root initiation mutant rum1. Plant Physiology, 139, 1255-1267. DOI: https://doi.org/10.1104/pp.105.067330

Zar, J.H. (2010). 12. Two-factor analysis of variance. Biostatistical Analysis. 5th Edition, Pearson Education. Inc., Upper Saddle River, New Jersey, USA, 249-284.

Zuffo, L.T., Luz, L.S., Destro, V., Silva, M.E.J., Rodrigues, M.C., Lara, L.M., de Faria, S.V., & DeLima, R.O. (2021). Assessing genotypic variation for nitrogen use efficiency and associated traits in Brazilian maize hybrids grown under low and high nitrogen inputs. Euphytica, 217, 71. DOI: https://doi.org/10.1007/s10681-021-02806-y

Published
2024-09-17
How to Cite
Reyes-Matamoros, J., Mora-Ramírez, M., Morales-Manzo, I., & Valderrama-Romero, A. (2024). Morphological response of native maize (Zea mays L.) seedlings to contrasting nitrogen environments. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 41(4), e244134. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/42719
Section
Crop Production