Nitrogen mineralization in soils cultivated with plantain (Musa AAB Subgroup plátano cv. Hartón), Zulia state, Venezuela
Abstract
The main source of N in the soil is organic matter; therefore, its availability depends on its quantity and quality, microbial activity, soil characteristics and management. An efficient way to quantify available N is by mineralizing it as ammonium (N-NH) and nitrate (N-NO). Therefore, in this study, the total and available N was determined in soil samples 0-20 cm deep from two plots with plantain plants (Musa AAB plantain subgroup cv. Hartón) with high and low vigor (AV and BV, respectively), in the South of Lake Maracaibo. Total N was determined by the Kjeldalh method and the mineralization of available N by incubation under laboratory conditions for 10 weeks. The accumulated mineralized N (Nm), the constant mineralization rate of (k) and the potentially mineralizable N (N0) were calculated. A one-way analysis of variance was applied, when it was significant (p<0.05), a Tukey test was applied for multiple comparisons of means. Total N was low (<0.025 %) and did not present statistical differences (p<0.05) between AV and BV. The accumulated mineralized N-NO was statistically (p<0.05) higher (524.47 mg.kg-1) in BV, while the N-NH did not present differences between AV and BV. Only k was statistically higher (0.07 ± 0.03; p<0.05) in BV. Nitrification was the process that prevailed especially in BV where organic carbon was higher and presented a higher percentage of sand.
Downloads
References
Aular, J. y M. Casares. 2011. Consideraciones sobre la producción de frutas en Venezuela. Rev. Bras. Frutic., Jaboticabal - SP, Volume Especial: 187-198.
Cai, A., H. Xu, X. Shao, P. Zhu, W. Zhang, M. Xu and D. Murphy. 2016. Carbon and nitrogen mineralization in relation to soil particle-size fractions after 32 years of chemical and manure application in a continuous maize cropping system. PLoS ONE 11(3): e0152521. doi:10.1371/journal.pone.0152521.
Campos, P.D.G., I. Alves, M. Mahmoud and M.X. Vieira. 2019. Potassium chloride: impacts on soil microbial activity and nitrogen mineralization. Cienc. Rural. 49(5): 1-9.
Celaya-Michel, H. y E. Castellanos-Villegas. 2011. Mineralización de nitrógeno en el suelo de zonas áridas y semiáridas. Terra Lat. 29(3): 343-356.
Dai, S., J. Wang, Y. Cheng, J. Zhang and Z. Cai. 2017. Effects of long-term fertilization on soil gross N transformation rates and their implications. J. Integr. Agric. 16(12): 2863-2870.
Fleck, A. and H.N. Munro 1965. The determination of organic nitrogen in biological materials. Clin. Chim. Acta 2: 2-12.
González-Pedraza, A.F., J. Atencio., K. Cubillán., R. Almendrales., L. Ramírez y O. Barrios. 2014. Actividad microbiana en suelos cultivados con plátano (Musa AAB subgrupo plátano cv. Hartón) con diferente vigor de las plantas. Rev. Fac. Agron. (LUZ). 31(Sup. 1): 526-538.
Gutiérrez, S.A. 2020. Economía y políticas agroalimentarias. Banco Central de Venezuela, Caracas, Venezuela. 528 p.
Gutiérrez, S.A. 2010. La Situación Agroalimentaria en Venezuela. Hacia una Nueva Estrategia. FORO. 3(5): 31-52.
Herrera, C., LI. Calderón and A.M. Gutiérrez. 2017. Soil quality index in conventional and semi-ecological farms producing plantain (Musa AAB Simmonds cv. Dominic Harton) in Anolaima-Cundinamarca, Colombia. Acta Agron. 66(4): 457-465.
Ju, X., and Ch. Zhang. 2017. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review. J. Integr. Agric. 16(12): 2848-2862.
Mahal, N.K., W.R. Osterholz, F.E. Miguez, H.J. Poffenbarger, J.E. Sawyer, D.C. Olk, S.V. Archontoulis and M.J. Castellano. 2019. Nitrogen fertilizer suppresses mineralization of soil organic matter in maize agroecosystems. Front. Ecol. Evol. 7:59.doi: 10.3389/fevo.2019.00059.
Masunga, R.H., V. Nwakaego, P. Deusdedit, M. Inakwu, A. Singhd, D. Buchane and S. De Nevee. 2016. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil Ecol. 101: 185-193.
Meya, A., P.A. Ndakidemi, K.M. Mtei, R. Swennen and R. Merckx. 2020. Optimizing soil fertility management strategies to enhance banana production in volcanic soils of the Northern Highlands, Tanzania. Agronomy. 10(289): 1-21. doi:10.3390/agronomy10020289.
Ministerio del Ambiente y de los Recursos Naturales Renovables (MARNR). 1978. Hacia un plan rector de ordenación del territorio. Zona Sur del Lago de Maracaibo. Serie informe Técnicos DGPOA/IT/16. Caracas, Venezuela. 78 pp.
Molero, M., L. Gutiérrez, Q. Contreras, C. Rondón, P. Carrero y E. Rojas. 2008. Determinación de los niveles de: K, P, N, Ca, Mg, Zn, Cu, Fe, y Mn en muestras de suelos y tejido foliar del cultivo Musa AAB, subgrupo plátano cv. Hartón. Prod. Agrop. 1(1): 3-6.
Otzen, T. y C. Manterola. 2017. Técnicas de muestreo sobre una población a estudio. Int. J. Morphol. 35(1): 227-232.
Rodríguez, V. y O. Rodríguez. 1998. Biometría de la cepa de plátano (Musa AAB subgrupo plátano cv. Hartón) en plantas con rendimientos superiores a 18 kilogramos por racimo, en Venezuela. Rev. Fac. Agron. (LUZ). 15: 439-445.
Rodríguez, V., E. Malavolta, A. Sánchez y O. Lavoranti. 2004. Balance nutricional de referencia de suelos y hojas en el cultivo de plátano Hartón. Bioagro. 16(1): 39-46.
Stanford, G. and S.J. Smith. 1972. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. Proc. 36: 465-472.
STATISTICA 2001. Basic Statistical Analysis Methods. Versión 6.0. StatSoft, Tulsa, OK.
Wu, Y., M. Shaaban, C. Deng, Q. Peng and R. Hu. 2017. Changes in the soil N potential mineralization and nitrification in a rice paddy after 20 yr application of chemical fertilizers and organic matter. Can. J. Soil Sci. 97: 290–299.
Copyright (c) 2021 https://creativecommons.org/licenses/by-nc/4.0/
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.