Kinetic study of solid-liquid extraction of caffeine in Ilex guayusa Loes

Keywords: kinetics, Peleg's equation, aqueous extract, mathematical model

Abstract

The kinetic study of the solid-liquid extraction of caffeine in Ilex guayusa Loes addresses a critical stage in the isolation of alkaloids such as caffeine. Solid-liquid extraction, a widely used technique, plays a fundamental role in obtaining these compounds. The study aimed to evaluate the applicability of the Peleg equation to model the solid-liquid extraction of caffeine in Ilex guayusa Loes leaves. Caffeine content was determined by UV-visible absorption spectroscopy. Extraction kinetics were estimated using the two-parameter Peleg’s equation. The correspondence between the experimental results and those predicted by the model was established by calculating Pearson's correlation. The results indicated significant extraction temperature and time effects on caffeine content, with concentrations ranging from 0.24 to 1.52 g.100 g-1 at different extraction temperatures (30, 40, and 50 °C). The Peleg equation effectively modeled caffeine extraction kinetics, with high Pearson correlation coefficients (0.96895 to 0.99685) confirming its suitability for predicting caffeine concentration. These results highlight the importance of understanding extraction kinetics to optimize caffeine extraction processes, offering valuable insights for industries using Ilex guayusa Loes extracts.

Downloads

Download data is not yet available.

References

Bitwell, C., Indra, S. Sen, Luke, C., & Kakoma, M. K. (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African, 19, 1–7. Doi.org/10.1016/J.SCIAF.2023.E01585
Bucić-Kojić, A., Planinić, M., Tomas, S., Bilić, M., & Velić, D. (2007). Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering, 81(1), 236–242. Doi.org/10.1016/j.jfoodeng.2006.10.027
Cadena-Carrera, S., Tramontin, D. P., Jacques, R., Scapin, E., Müller, J. M., & Hense, H. (2023). Green-based methods to obtain bioactive compounds from Ilex guayusa Loes. using polar solvent. Natural Product Research, 37(18), 3103–3108. Doi.org/10.1080/14786419.2022.2140802
Carvalho, S. D., Ortega, M., Orellana, M., Rodríguez, M., Folta, K. M., & Torres, M. de L. (2021). In vitro propagation of the Amazonian medicinal plant guayusa (Ilex guayusa) and effects of light in the growth and development of this shade tolerant plant. Plant Cell, Tissue and Organ Culture, 147(3), 503–517. Doi.org/10.1007/s11240-021-02142-y
Erazo-Garcia, M. P., Guadalupe, J. J., Rowntree, J. K., Borja-Serrano, P., de los Monteros-Silva, N. E., & De Lourdes Torres, M. (2021). Assessing the genetic diversity of Ilex guayusa loes., a medicinal plant from the ecuadorian amazon. Diversity, 13(5), 182. Doi.org/10.3390/D13050182/S1
Hashim, F. A., Mostafa, R. R., Hussien, A. G., Mirjalili, S., & Sallam, K. M. (2023). A physical law-based algorithm for numerical optimization. Knowledge-Based Systems, 260, 110146. Doi.org/10.1016/J.KNOSYS.2022.110146
Jha, A. K., & Sit, N. (2022). Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends in Food Science & Technology, 119, 579–591. Doi.org/10.1016/J.TIFS.2021.11.019
Kelebek, H., Sasmaz, H. K., Aksay, O., Selli, S., Kahraman, O., & Fields, C. (2024). Exploring the Impact of Infusion Parameters and In Vitro Digestion on the Phenolic Profile and Antioxidant Capacity of Guayusa (Ilex guayusa Loes.) Tea Using Liquid Chromatography, Diode Array Detection, and Electrospray Ionization Tandem Mass Spectrometr. Foods, 13(5), 694. Doi.org/10.3390/FOODS13050694
Korniyenko, B., & Ladieva, L. (2021). Mathematical Modeling Dynamics of the Process Dehydration and Granulation in the Fluidized Bed. Advances in Intelligent Systems and Computing, 1247, 18–30. Doi.org/10.1007/978-3-030-55506-1_2
Lalji, S. M., Ali, S. I., Ahmed, R., Hashmi, S., & Awan, Z. U. H. (2022). Comparative performance analysis of different swelling kinetic models for the evaluation of shale swelling. Journal of Petroleum Exploration and Production Technology, 12(5), 1237–1249. Doi.org/10.1007/S13202-021-01387-9/TABLES/8
Li, R., Huang, Q., Zhang, D., Zhu, X., Shan, J., & Wang, J. (2020). An aging theory-based mathematic model for estimating the wax content of wax deposits using the Fick’s second law. AIChE Journal, 66(4), e16892. Doi.org/10.1002/AIC.16892
Luna-Fox, S. B., Álvarez-Castro, R. R., Peñafiel-Bonilla, N. J., Radice, M., Scalvenzi, L., Arteaga-Crespo, Y., López-Hernández, O. D., & Bravo-Sánchez, L. R. (2023a). Elaboración de un preparado hidrosoluble en forma de sólido pulverulento a partir de Ilex guayusa Loes. La Técnica Revista de Las Agrociencias, 13(1). Doi.org/10.33936/LATECNICA.V13I1.5725
Mahoney, C. R., Giles, G. E., Marriott, B. P., Judelson, D. A., Glickman, E. L., Geiselman, P. J., & Lieberman, H. R. (2019). Intake of caffeine from all sources and reasons for use by college students. Clinical Nutrition, 38(2), 668–675. Doi.org/10.1016/J.CLNU.2018.04.004
Manzano-Santana, P., Quijano-Avilés, M., Chóez-Guaranda, I., Barragán, A., Viteri-Espinoza, R., Martínez, D., Camacho, C., & Miranda-Martínez, M. (2018). Effect of drying methods on physical and chemical properties of Ilex guayusa leaves. Revista Facultad Nacional de Agronomía Medellín, 71(3), 8617–8622. Doi.org/10.15446/RFNAM.V71N3.71667
Orji, E., Ugwu, A., Ugwuanyi, C., Cyril, M., Uwakwe, E., & Elejere, U. (2022). Reducing Errors In Slope In Physics Graphs Using Origin Lab Software. Webology, 19(3), 1-12.https://www.webology.org/data-cms/articles/20220503121303pmwebology%2019%20(3)%20-%208%20pdf.pdf
Paladines-Santacruz, G., Orellana-Manzano, A., Sarmiento, G., Pilozo, G., Iñiga, E., Zaruma-Torres, F., Ortíz-Ulloa, J., Quijano-Avilés, M., Di Grumo, D., Orellana-Manzano, S., Villacrés, M. del C., Manzano, P., & Vanden Berghe, W. (2021). Acute oral toxicity of a novel functional drink based on Ilex guayusa, Vernonanthura patens, and cocoa husk. Toxicology Reports, 8, 747–752. Doi.org/10.1016/J.TOXREP.2021.03.026
Peleg, M. (1988). An Empirical Model for the Description of Moisture Sorption Curves. Journal of Food Science, 53(4), 1216–1217. Doi.org/10.1111/J.1365-2621.1988.TB13565.X
Peñafiel-Bonilla, N. J., Luna-Fox, S. B., García-Quintana, Y., & Arteaga-Crespo, Y. (2023). Optimización de la extracción de compuestos fenólicos y actividad antioxidante en hojas de Annona muricata L. mediante la metodología de superficie de respuesta. Código Científico Revista de Investigación, 4(2), 70–87. Doi.org/10.55813/GAEA/CCRI/V4/N2/232
Rai, N., Kumari Keshri, P., Verma, A., Kamble, S. C., Mishra, P., Barik, S., Kumar Singh, S., & Gautam, V. (2021). Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology, 12(3), 139–159. Doi.org/10.1080/21501203.2020.1870579
Rajput, A., Sharma, R., & Bharti, R. (2022). Pharmacological activities and toxicities of alkaloids on human health. Materials Today: Proceedings, 48, 1407–1415. Doi.org/10.1016/J.MATPR.2021.09.189
Schaefer, C., Kirk, A. T., Allers, M., & Zimmermann, S. (2020). Ion Mobility Shift of Isotopologues in a High Kinetic Energy Ion Mobility Spectrometer (HiKE-IMS) at Elevated Effective Temperatures. Journal of the American Society for Mass Spectrometry, 31(10), 2093–2101. https://pubs.acs.org/doi/abs/10.1021/jasms.0c00220
Segovia-Gómez, F., Corral, J. J., & Almajano, M. P. (2013). Estudio cinético de la extracción Sólido-Líquido de los compuestos polifenólicos del Residuo del Aguacate. JORNADES DE RECERCA EUETIB, 8(2), 131–138. https://upcommons.upc.edu/bitstream/handle/2099/14999/Estudio cinético de la extracción Sólido-Líquido de los compuestos polifenólicos del Residuo del Aguacate.pdf
Tepe, T. K. (2024). Effect of pretreatments on drying characteristics, rehydration properties, and total energy consumption of carrot slices: comparison between thin layer mathematical modelling and artificial neural network modelling. Biomass Conversion and Biorefinery, 14(1), 1373–1387. Doi.org/10.1007/S13399-023-04925-Z/METRICS
Toscano, S., Trivellini, A., Cocetta, G., Bulgari, R., Francini, A., Romano, D., & Ferrante, A. (2019). Effect of Preharvest Abiotic Stresses on the Accumulation of Bioactive Compounds in Horticultural Produce. Frontiers in Plant Science, 10, 468818. Doi.org/10.3389/FPLS.2019.01212/BIBTEX
Vandeponseele, A., Draye, M., Piot, C., & Chatel, G. (2021). Study of Influential Parameters of the Caffeine Extraction from Spent Coffee Grounds: From Brewing Coffee Method to the Waste Treatment Conditions. Clean Technologies, 3(2), 335–350. Doi.org/10.3390/CLEANTECHNOL3020019
Yu, J., Feng, Y., Sun, D., Ren, W., Shao, C., & Sun, R. (2022). Highly Conductive and Mechanically Robust Cellulose Nanocomposite Hydrogels with Antifreezing and Antidehydration Performances for Flexible Humidity Sensors. ACS Applied Materials and Interfaces, 14(8), 10886–10897. https://pubs.acs.org/doi/abs/10.1021/acsami.2c00513
The image indicates the extraction of caffeine in aqueous extracts of leaves of I. guayusa L. using chloroform as solvent.
Published
2024-08-16
How to Cite
Luna-Fox, S., Uvidia-Armijo, J., & Rivera-Barreto, J. (2024). Kinetic study of solid-liquid extraction of caffeine in Ilex guayusa Loes. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 41(3), e244128. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/42581
Section
Food Technology