Mathematical modeling of the onion drying process: Kinetic and Thermodynamic Parameters

Keywords: onion dehydration, mathematical models, kinetic parameters, drying efficiency, environmental sustainability

Abstract

The dehydration processes of onions are governed by a series of kinetic and thermodynamic parameters that, when controlled, facilitate the identification of a mathematical model that will improve the efficiency and quality of the drying process in terms of reducing production costs, environmental sustainability, and the development of innovative products. In this study, various mathematical models were validated to accurately describe the drying process, and from them, the kinetic and thermodynamic parameters governing the dehydration processes were determined. For the experimental development, onions grown in the Ica region of Peru were peeled, cut into pieces, and dehydrated (60, 70, and 80 ºC), and five mathematical models were applied to model the drying kinetics of the process. The Midilli model was the best fit for the experimental curves. Increasing the temperature reduced the enthalpy and increased the entropy, Gibbs free energy, and effective diffusion coefficient in both varieties of onions. Determining the drying kinetics has been essential for establishing operating conditions by understanding how temperature, relative humidity, and other parameters affect the moisture removal rate, allowing for the design of optimal equipment and predicting product behavior during the drying process.

Downloads

Download data is not yet available.

References

Attkan, A., Alam, M., Raleng, A., & Yadav, Y. K. (2021). Drying Kinetics of Onion (Allium cepa L.) Slices using Low-humidity Air-assisted Hybrid Solar Dryer. Journal of Agricultural Engineering (India), 58(3). Doi:10.52151/jae2021581.1750
Babu, A. K., Kumaresan, G., Raj, V. A. A., & Velraj, R. (2018). Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews, 90, 536–556. Doi: 10.1016/j.rser.2018.04.002
Bosco, D., Roche, L. A., Della Rocca, P. A., & Mascheroni, R. H. (2018). Osmodehidrocongelación de batata fortifcada con Zinc y Calcio. INNOTEC, 15. Doi: 10.26461/15.05
Braga da Silva, N. C., Ferreira dos Santos, S. G., Pereira da Silva, D., Silva, I. L., & Souza Rodovalho, R. (2019). Drying kinetics and thermodynamic properties of boldo leaves (Plectranthus barbatus Andrews). Jaboticabal, 47(1), 1–7. Doi:10.15361/1984-5529.2019v47n1p1-7
Chakraborty, R., Kashyap, P., Gadhave, R. K., Jindal, N., Kumar, S., Guiné, R. P. F., Mehra, R., & Kumar, H. (2023). Fluidized Bed Drying of Wheatgrass: Effect of Temperature on Drying Kinetics, Proximate Composition, Functional Properties, and Antioxidant Activity. Foods, 12(8). Doi:10.3390/foods12081576
Compaoré, A., Putranto, A., Dissa, A. O., Ouoba, S., Rémond, R., Rogaume, Y., Zoulalian, A., Béré, A., & Koulidiati, J. (2019). Convective drying of onion: modeling of drying kinetics parameters. Journal of Food Science and Technology, 56(7), 3347–3354. Doi:10.1007/s13197-019-03817-3
Fernando, J. A. K. M., & Amarasinghe, A. D. U. S. (2016). Drying kinetics and mathematical modeling of hot air drying of coconut coir pith. SpringerPlus, 5(1). Doi:10.1186/s40064-016-2387-y
Gasparin, P. P., Christ, D., & Coelho, S. R. M. (2017). Drying of Mentha piperita leaves on a fixed bed at different temperatures and air velocities. Revista Ciência Agronômica, 48(2). Doi:10.5935/1806-6690.20170028
Jafari, S. M., Ganje, M., Dehnad, D., & Ghanbari, V. (2016). Mathematical, Fuzzy Logic and Artificial Neural Network Modeling Techniques to Predict Drying Kinetics of Onion. Journal of Food Processing and Preservation, 40(2), 329–339. Doi:10.1111/jfpp.12610
Khodja, Y. K., Dahmoune, F., Bachir bey, M., Madani, K., & Khettal, B. (2020). Conventional method and microwave drying kinetics of Laurus nobilis leaves: effects on phenolic compounds and antioxidant activity. Brazilian Journal of Food Technology, 23. Doi:10.1590/1981-6723.21419
Lemus-Mondaca, R., Vega-Gálvez, A., Moraga, N. O., & Astudillo, S. (2015). Dehydration of Stevia rebaudiana Bertoni Leaves: Kinetics, Modeling and Energy Features. Journal of Food Processing and Preservation, 39(5), 508–520. Doi:10.1111/jfpp.12256
Siqueira Martins, E. A., Lage, E. Z., Duarte Goneli, A. L., Hartmann Filho, C. P., & Lopes, J. G. (2015). Drying kinetics of Serjania marginata Casar leaves. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(3), 238–244. Doi:10.1590/1807-1929/agriambi.v19n3p238-244
Pasechny D., Smotraeva I., & Balanov P. (2023). Phenolic Compounds from onion husk (Allium cepa L.): Mode of Extraction. BIO Web of Conferences 67, 03017E Doi:10.1051/bioconf/20236703017
Przeor, M., Flaczyk, E., Beszterda, M., Szymandera-Buszka, K. E., Piechocka, J., Kmiecik, D., Szczepaniak, O., Kobus-Cisowska, J., Jarzębski, M., & Tylewicz, U. (2019). Air-drying temperature changes the content of the phenolic acids and flavonols in white mulberry (Morus alba L.) leaves. Ciência Rural, 49(11). Doi:10.1590/0103-8478cr20190489
Quequeto, W. D., Siqueira, V. C., Mabasso, G. A., Isquierdo, E. P., Leite, R. A., Ferraz, L. R., Hoscher, R. H., Schoeninger, V., Jordan, R. A., Goneli, A. L. D., & Martins, E. A. S. (2019). Mathematical Modeling of Thin-Layer Drying Kinetics of Piper aduncum L. Leaves. Journal of Agricultural Science, 11(8), 225. Doi:10.5539/jas.v11n8p225
Revaskar, V. A., Pisalkar, P. S., Pathare, P. B., & Sharma, G. P. (2014). Dehydration kinetics of onion slices in osmotic and air convective drying process. Res. Agr. Eng., 60(3), 92–99. Doi:10.17221/22/2012-RAE
Silva, L. A., Resende, O., Virgolino, Z. Z., Bessa, J. F. V., Morais, W. A., & Vidal, V. M. (2015). Drying kinetics and effective diffusivity in jenipapo sheets Genipa americana L.). Revista Brasileira de Plantas Medicinais, 17(4 suppl 2), 953–963. Doi:10.1590/1983-084X/14_106
Silva-Paz, R. J., Mateo-Mendoza, D. K., & Eccoña-Sota, A. (2023). Mathematical Modelling of Muña Leaf Drying (Minthostachys mollis) for Determination of the Diffusion Coefficient, Enthalpy, and Gibbs Free Energy. ChemEngineering, 7(3). Doi:10.3390/chemengineering7030049
Silveira Dorneles, L. do N., Duarte Goneli, A. L., Lima Cardoso, C. A., Bezerra da Silva, C., Hauth, M. R., Cardoso Obá, G., & Schoeninger, V. (2019). Effect of air temperature and velocity on drying kinetics and essential oil composition of Piper umbellatum L. leaves. Industrial Crops and Products, 142, 111846. Doi:10.1016/j.indcrop.2019.111846
Süfer, Ö., Sezer, S., & Demir, H. (2017). Thin layer mathematical modeling of convective, vacuum and microwave drying of intact and brined onion slices. Journal of Food Processing and Preservation, 41(6), e13239. Doi:10.1111/jfpp.13239
Published
2024-08-13
How to Cite
Giménez-López, B., Ronceros, C., Quispe, A., Cusi, R., Giménez-Medina, M., & Cuba, C. (2024). Mathematical modeling of the onion drying process: Kinetic and Thermodynamic Parameters. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 41(3), e244127. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/42573
Section
Food Technology