Biological efficiency and evaluation of bioactive compounds of wild mexican strains of Hericium erinaceus

  • Laura Páez-Olivan Instituto Tecnológico Nacional de México Campus Valle del Guadiana, Km. 22,5 Carretera Durango-México, Villa Montemorelos, Durango. https://orcid.org/0000-0003-2029-4205
  • Carmen Quiñones Instituto Tecnológico Nacional de México Campus Valle del Guadiana, Km. 22,5 Carretera Durango-México, Villa Montemorelos, Durango. https://orcid.org/0009-0003-0961-7402
  • Néstor Naranjo Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango-Instituto Politécnico Nacional, Calle Sigma 119, Fracc. 20 de noviembre II, Durango, Dgo, México. https://orcid.org/0000-0002-6918-7526
  • René Torres Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango-Instituto Politécnico Nacional, Calle Sigma 119, Fracc. 20 de noviembre II, Durango, Dgo, México. https://orcid.org/0000-0002-2523-6699
  • Miguel Correa-Ramírez Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango-Instituto Politécnico Nacional, Calle Sigma 119, Fracc. 20 de noviembre II, Durango, Dgo, México https://orcid.org/0000-0003-0291-3156
  • Jaime Herrera Instituto Tecnológico Nacional de México Campus Valle del Guadiana, Km. 22,5 Carretera Durango-México, Villa Montemorelos, Durango. https://orcid.org/0000-0001-8998-631X
Keywords: agave bagasse, antioxidant, medicinal mushrooms

Abstract

The basidiomycete Hericium erinaceus is one of the most consumed edibles and medicinal mushrooms in the world and appreciated in traditional Chinese medicine. In Mexico it is known as lion's mane. The biological efficiency of wild strains of H. erinaceus cultivated in different substrates in the Durango region, mainly agave bagasse, a waste from mezcal production, was evaluated. The CCH003 strain from Espinazo del diablo showed the highest biological efficiency of 42.33 % and a productivity rate of 0.47 %, with a total cultivation period of 90 days and three harvests. Regarding the evaluation of bioactive compounds, the same strain obtained significant differences compared to the others, it presented the highest values for all determinations; 60 ± 0.018 mg EAG.g ES-1 in phenolic content, 4.21 ± 0.013 mg EQ.g ES-1 for flavonoids, 71.16 ± 0.002 mg EAA.g ES-1 in CAT, 0.0012 ± 0.001 mg AA.g ES-1 for by ABTS and 121 ± 0.107 µg EAG.mL-1 by DPPH. The variability of the results in the tests carried out provides information on how the type of substrate, climatological and geographical conditions and stage of maturity influence the development of the fungus, including the production of secondary metabolites, even if it is the same species. It is expected that this information will be useful to promote the use of agave bagasse as a substrate in the cultivation of H. erinaceus and thereby diversify rural activities in the region, and in the future generate new studies on the effect of conditions on the production of bioactive compounds.

Downloads

Download data is not yet available.

References

Almaraz-Abarca, N., González-Elizondo, M., Campos, M., Ávila-Sevilla, Z. E., Delgado-Alvarado, E. A., & Ávila-Reyes, J. A. (2013). Variabilidad de los perfiles fenólicos foliares del complejo Agave victoriae-reginae (Agavaceae). Botanical Sciences, 91(3), 295-306. https://www.scielo.org.mx/pdf/bs/v91n3/v91n3a5.pdf
Beelman, R. B., Royse, D. J. & Chikthimmah, N. (2003). Bioactive components in button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetideae) of nutritional, medicinal, and biological importance. International Journal of Medicinal Mushrooms, 5, 461–466DOI:10.1615/InterJMedicMush.v5.i4.10 Charumathy, M., Sudha, G., & Packialakshmi, B. (2016). Detection of antioxidant activity and bioactive constituents in the fruiting bodies of Hericium erinaceus pers-an edible mushroom. International Journal of Pharmacy and Pharmacy and Pharmaceutical Sciences, 8(3), 152-156.
https://journals.innovareacademics.in/index.php/ijpps/article/view/10017/3945
Colavolpe, M. B., Mejía, S. J., & Albertó, E. (2014). Efficiency of treatments for controlling Trichoderma spp. during spawning in cultivation of lignicolous mushrooms. Brazilian Journal of Microbiology, 45(4), 1263-1270. https://www.scielo.br/j/bjm/a/FG7Sj73DgSgRHThRsWtk8qh/?format=pdf&lang=en
Hassan, F. R. H. (2007). Cultivation of the monkey head mushroom (Hericium erinaceus) in Egypt. Journal of Applied Sciences Research, 3(10), 1229-1233. https://www.researchgate.net/profile/Fathy-Hassan-2/publication/332247554_Cu_lti_vati_on_of_th_e_Mon_k_ey_Hea_d_Mu_sh_ro_om_Hericium_erinaceus_in_Egypt/links/5ca91adea6fdcca26d045484/Cu-lti-vati-on-of-th-e-Mon-k-ey-Hea-d-Mu-sh-ro-om-Hericium-erinaceus-in-Egypt.pdf
Karadžić, D. (2006). Contribution to the study of fungi in the genera Sparassis Fr. and Hericium Pers. in our forests. Glasnik Šumarskog Fakulteta, 93, 83-96. https://agris.fao.org/search/en/providers/122436/records/64747f1679cbb2c2c1b82ce0
Kim, M. Y., Seguin, P., Ahn, J. K., Kim, J. J., Chun, S. C., Kim, E. H., & Ro, H. M. (2008). Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. Journal of Agricultural and Food Chemistry, 56(16), 7265-7270. https://doi.org/10.1021/jf8008553
Kosanić, M., Ranković, B., & Dašić, M. (2012). Mushrooms as possible antioxidant and antimicrobial agents. Iranian Journal of Pharmaceutical Research, 11(4), 1095-1102. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813146/
Kozarski, M., Klaus, A., Jakovljevic, D., Todorovic, N., Vunduk, J., Petrović, P., & Van Griensven, L. (2015). Antioxidants of edible mushrooms. Molecules, 20(10), 19489-19525. https://doi.org/10.3390/molecules201019489
Li, H., Park, S., Moon, B., Yoo, Y. B., Lee, Y. W., & Lee, C. (2012). Targeted phenolic analysis in Hericium erinaceus and its antioxidant activities. Food Science and Biotechnology, 21(3), 881-888. https://doi.org/10.1007/s10068-012-0114-1
Nieto, I. J., and Chegwin, C. (2010). Influencia del sustrato utilizado para el crecimiento de hongos comestibles sobre sus características nutraceúticas. Revista Colombiana de Biotecnología, 12(1), 169-178. http://www.scielo.org.co/pdf/biote/v12n1/v12n1a16.pdf
Nurmi, K., Ossipov, V., Haukioja, E., & Pihlaja, K. (1996). Variation of total phenolic content and low-molecular-weight phenolics in foliage of the mountain birch trees (Betula pubescens ssp. tortuosa). Journal of Chemical Ecology, 22, 2023–2040. https://doi.org/10.1007/BF02040093
Omarini, A., Lechner, B. E., & Albertó, E. (2009). Polyporus tenuiculus: a new naturally occurring mushroom that can be industrially cultivated on agricultural waste. Journal of Industrial Microbiology and Biotechnology, 36(5), 635-642. https://doi.org/10.1007/s10295-009-0530-2
Páez-Olivan, L. A., Correa-Ramírez, M., Guzmán-Dávalos, L., Naranjo-Jiménez, N., Almaraz-Abarca, N., Ávila-Reyes, J. A., Herrera-Gamboa J., Rosas Medina I., González- Valdez L. S., & Torres-Ricario, R. (2022). Studies of morphological and genetic variability of Hericium erinaceus from the Northwest area of the Sierra Madre Occidental, Durango, Mexico. The Southwestern Naturalist, 66(3), 225-232. https://doi.org/10.1894/0038-4909-66.3.225
Prieto, P., and Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of Vitamin E. Analytical Biochemestry, 269(2), 337-341. https://doi.org/10.1006/abio.1999.4019
Puttaraju, N. G., Venkateshaiah, S. U., Dharmesh, S. M., Urs, S. M. N., & Somasundaram, R. (2006). Antioxidant activity of indigenous edible mushrooms. Journal of Agricultural and Food Chemistry, 54(26), 9764-9772. https://doi.org/10.1021/jf0615707
Quiñónez-Martínez, M., Ruan-Soto, F., Aguilar-Moreno, I. E., Garza-Ocañas, F., Lebgue-Keleng, T., Lavín-Murcio, P. A., & Enríquez-Anchondo, I. D. (2014). Knowledge and use of edible mushrooms in two municipalities of the Sierra Tarahumara, Chihuahua, Mexico. Journal of Ethnobiology and Ethnomedicine, 10, 1-13. https://doi.org/10.1186/1746-4269-10-67
Rani, P., Lal, M. R., Maheshwari, U., & Krishnan, S. (2015). Antioxidant potential of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes) cultivated on Artocarpus heterophyllus sawdust substrate in India. International Journal of Medicinal Mushrooms, 17(12), 1171-1177. DOI: 10.1615/intjmedmushrooms.v17.i12.70
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Sobieralski, K., Wojnilowicz, M., Siwulski M. (2009). Comparison of mycelium growth and yielding of selected strains of Hericium erinaceus (Bull. Fr.) Pers. on sawdust substrates with the glucose addition. Herba Polonica, 55(3): 266-272. https://herbapolonica.pl/resources/html/article/details?id=606245
Smolskaitė, L., Venskutonis, P. R., & Talou, T. (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Science and Technology, 60(1), 462-471 https://doi.org/10.1016/j.lwt.2014.08.007
Stamets, P., and Chilton, J. S. (1983). The mushroom cultivator: a practical guide to growing mushroom at home. First Washington. No. 589.1 S8.
Tello-Balderas, J. J., and García-Moya, E. (1988). El maguey (Agave, subgénero Agave en el altiplano potosino-zacatecano). Boletín de la Sociedad Botánica de México, 48, 119-134. https://www.botanicalsciences.com.mx/index.php/botanicalSciences/article/view/1350/1001
Vaca-Paulín, R., Lugo de la Fuente, J., & Esteller Alberich, M. V. (2006). Caracterización de la materia orgánica soluble y de los ácidos húmicos en suelo acondicionado con lodo residual fresco o compostado. Revista Internacional de Contaminación Ambiental, 22(1), 27-37. https://www.scielo.org.mx/pdf/rica/v22n1/0188-4999-rica-22-01-27.pdf
Wilkinson, R. E., and Kasperbauer, M. J. (1972). Epicuticular alkane content of tobacco as influenced by photoperiod, temperature, and leaf age. Phytochemistry, 11(8), 2439-2442. https://doi.org/10.1016/S0031-9422(00)88513-1
Woisky, R. G., and Salatino, A. (1998). Analysis of propolis: some parameters and procedures for chemical quality control. Journal of Apicultural Research, 37(2), 99- 105. https://doi.org/10.1080/00218839.1998.11100961
Wootton-Beard, P. C., Moran, A., & Ryan, L. (2011). Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Research International, 44(1), 217-224. https://doi.org/10.1016/j.foodres.2010.10.033
Xu, B. J., and Chang, S. K. C. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of Food Science, 72(2), S159-S166. https://doi.org/10.1111/j.1750-3841.2006.00260.x
Published
2024-06-11
How to Cite
Páez-Olivan, L., Quiñones, C., Naranjo, N., Torres, R., Correa-Ramírez, M., & Herrera, J. (2024). Biological efficiency and evaluation of bioactive compounds of wild mexican strains of Hericium erinaceus. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 41(2), e244120. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/42269
Section
Crop Production