Yield of sugar beet with drip irrigation, with Penman’s equation and AquaCrop model

  • Jorge Pinna Universidad Privada Antenor Orrego, Facultad de Ciencias Agrarias, Escuela de Ingeniería Agrónoma, Av. América Sur 3145, Urb. Monserrate, Trujillo, Perú https://orcid.org/0000-0003-1070-7272
  • Kevin Rivas Egresado de la Universidad Privada Antenor Orrego, Facultad de Ciencias Agrarias, Escuela de Ingeniería Agrónoma, Av. América Sur 3145, Urb. Monserrate, Trujillo, Perú https://orcid.org/0000-0001-6114-6378
Keywords: sandy, aridity, spacings, evapotranspiration, temperature

Abstract

It is necessary to estimate sugar beet yield, because studies with this crop demonstrated than in Peruvian coastal zone, could be a profitable crop. The objective of the present experiment was to know if dry matter yield of sugar beet is related with Penman’s equation, or FAO’s AquaCrop model. Experiment was made in a sandy soil, non-salty, calcareous, very poor in organic matter, with drip irrigation in Peruvian northern coast. Four treatments: two, three, four and five plant rows per irrigation drip line, in a completely random design, with four replications were utilized. Calculated fresh matter weighs with AquaCrop were between 15.5 and 24.5 Mg.ha-1, very much lesser to real ones (between 67.5 and 103.9 Mg.ha-1) hence Aqua Crop model is not effective to estimate yield of sugar beet. It is possible to estimate yield of sugar beet, with Penman’s formula, which varied between 11.40 and 27.96 Mg.ha-1 dry weight, and the real one was between 13.4 and 21.5 Mg.ha-1, with a "Root Mean Square Error" (RMSE) of 3.73.

Downloads

Download data is not yet available.

References

Alishiri, R., Paknejad, F. & Aghayari, F. (2014). Simulation of sugarbeet growth under different water regimes and nitrogen levels by aqua crop. International Journal of Biosciences, 4(1), 1-9. https://www.researchgate.net/publication/342079161_Simulation_of_sugarbeet_growth_under_different_water_regimes_and_nitrogen_levels_by_aqua_crop
Araji, H.A., Wayayok,A., Khayamin, S., The, C.B.S., Abdullah, A.F., Amiri, E. & Bavani, A.M. (2019). Calibration of the Aquacrop model to simulate Sugar Beet production and water productivity under different treatments. Applied engineering in agriculture, 35(2), 211–219. http://christopherteh.com/publications/resources/NRES12946.pdf
Bitri, M. & Grazhadani, S. (2015). Validation of Aqua Crop model in the simulation of sugar beet production under different water regimes in southeastern Albania. International Journal of Engineering Science and Innovative Technology, 4(6), 171-181. www.ijesit.com/Volume%204/Issue%206/IJESIT201506_20.pdf
Burgos, J.J. (1984). El clima en la producción de alimentos en América Latina. Sesión ordinaria de 8 de agosto de 1984. Academia Nacional de Agronomía y Veterinaria, 38(5), 4-34. https://core.ac.uk/download/pdf/296354711.pdf
FAO. Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2006). Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. In estudio FAO Riego y Drenaje 56. R.G. Allen, L.S. Pereira, D. Raes, M. Smith (Eds). Food and Agriculture Organization of the United Nations. Rome. 298p. https://www.fao.org/3/x0490s/x0490s00.htm
FAO. Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2012). Crop Yield Response to Water. In FAO Irrigation and Drainage Paper 66. P. Steduto, T. C. Hsiao, E. Fereres, D. Raes (Eds). Food and Agriculture Organization of the United Nations. Rome. 500p. https://www.fao.org/3/i2800e/i2800e00.htm
Fitzgerald, J.B., Brereton, A.J. & Holden, N.M. (2005). Assessment of regional variation in climate on the management of dairy cow systems in Ireland using a simulation model. Grass and Forages Science, 60, 283-296. https://doi.org/10.1111/j.1365-2494.2005.00479.x
Fitzgerald, J.B., Brereton, A.J. & Holden, N.M. (2008). Simulation of the influence of poor soil drainage on grass-based dairy production systems in Ireland. Grass and Forages Science, 63, 380-389. https://doi.org/10.1111/j.1365-2494.2008.00637.x
Garcia-Vila, M., Morillo-Velarde, R. & Fereres, E. (2019). Modeling sugar beet responses to irrigation with Aqua Crop for optimizing water Allocation. Water, 11(9), 1918. https://doi.org/10.3390/w11091918
Hatfield, J.L. (2014). Radiation use efficiency. Evaluation of cropping and management systems. Agronomy Journal, 106(5), 1820-1827. https://doi.org/10.2134/agronj2013.0310
Hatfield, J.L. & Dold, C. (2019). Photosynthesis in the solar corridor systems. In The Solar Corridor System. Implementation and Impacts. Deichman, C.L., Kremer, R.J. (Eds.). Academic Press. pp. 1- 33. https://doi.org/10.1016/B978-0-12-814792-4.00001-2
Heno, S., Viou, L. & Khan, M. (2018). Sugar beet production in France. Sugar Tech, 20, 392-395. https://doi.org/10.1007/s12355-017-0575-x.
Hoffmann, C.M. & Kenter, C. (2018). Yield potential of sugar beet – have we hit the ceiling? Front. Plant Science, 9,289. https://doi.org/10.3389/fpls.2018.00289
Hoffmann, C.M. & Kluge-Severin, S. (2010). Light absorption and radiation use efficiency of autumn and spring sown sugar beets. Field Crop Research, 119, 238-244. http://dx.doi.org/10.1016/j.fcr.2010.07.014
Lizana, X.C., Sandaña, P., Behn, A., Ávila-Valdés, A., Ramírez, D.A., Soratto, R.P. & Campos, H. (2021). Chapter 18 – Potato. In Crop Physiology Case Histories for Major Crops. Sadras, V.O., Calderini, D.F. (Eds.). Academic Press. pp. 550-587. https://dokumen.pub/qdownload/crop-physiology-case-histories-for-major-crops-0128191945-9780128191941.html
Malik, A., Shakir, A.S., Ajmal, M., Jamal, M. & Ali, T. (2017). Assessment of Aqua Crop model in simulating sugar beet canopy cover, biomass and root yield under different irrigation and field management practices in semi-arid regions of Pakistan. Water Resources Management, 31(13), 4275-4292. http://link.springer.com/10.1007/s11269-017-1745-z
Mariscal, M.J., Orgaz, F. & Villalobos, F.J. (2000). Radiation-use efficiency and dry matter partitioning of a young olive (Olea europeae) orchard. Tree Physiology, 20, 65-72. https://doi.org/10.1093/treephys/20.1.65
Monteith, J.L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B. Biological Sciences, 281, 277-294. https://doi.org/10.1098/rstb.1977.0140
Penman, H. L. (1971). Water as a Factor in Productivity. In Potential Crop Production, P. F. Wareing & J. P. Cooper (Eds.), Heinemann, London, pp. 89-99. https://scholar.google.com/scholar_lookup?&title=Water%20as%20a%20factor%20in%20productivity&pages=89-99&publication_year=1971&author=Penman%2CHL https://www.amazon.com/Potential-Crop-Production-P-F-Wareing/dp/0435629905
Pinheiro, A.G., Alves, G.P., Alves de Souza, C.A., Araújo Júnior, G.N., Jardim, A.M., de Morais, J.E., de Souza, L.S., Lopes, D.C., Neto, A.J., Montenegro, A.A., Gomes, J.E. & da Silva, T.G. (2024). Calibration and validation of the AquaCrop model for production arrangements of forage cactus and grass in a semi-arid environment. Ecological Modelling, 488, 110606. 10.1016/j.ecolmodel.2023.110606
Pinna C., J., Valdivia V., S. & Tello A., H. (1983). Yield estimation of sugarcane from evapotranspiration data. Proceedings of the International Society of Sugar Cane Technologists, 18, 485-506. https://www.researchgate.net/publication/311949613_PLANT_PHYSIOLOGY_YIELD_ESTIMATION_OF_SUGAR_CANE_FROM_EVAPOTRANSPIRATION_DATA
Reynoso C., J., Valdivia V., S., Larsen C. E. & Pinna C., J. (2001). Comparativo de cultivares de remolacha azucarera en suelos salinos. Arnaldoa, 8(1), 93 - 100. https://www.researchgate.net/publication/311949805_Comparativo_de_cultivares_de_remolacha_azucarera_en_suelos_salinos
Rivas Q., K. & Pinna C., J. (2021). Estudio del número de líneas de plantas, por lateral de riego, en remolacha azucarera (Beta vulgaris L. var. Altissima Döll cv. Cooper); en un suelo de textura arena regada por goteo. Pueblo Continente, 32(2), 607-612. https://static2.upao.edu.pe/descargas/f4acef33201b1e8f5908d00b82ae551c226e46d282510db1910c0af016956f88641f19aea0f2bc54b60b4255a5bffe4457d47dbb191b5d809930ea298f604e48/volumen-32-n-2-julio--diciembre-2021.pdf
Rong, L., Gong, K., Duan, F., Li, S., Zhao,M., He, J., Zhou, W. & Yu, Q. (2021). Yield gap and resource utilization efficiency of three major food crops in the world – A review. Journal of integrative Agriculture, 20(2), 349-362. https://doi.org/10.1016/S2095-3119(20)63555-9
Sanchez-Sastre, L.F., Alte da Veiga, N.M.S., Ruiz-Potosme, N.M., Hernandez-Navarro, S., Marcos-Robles, J.L., Martin-Gil, J. & Martin-Ramos, P. (2020). Sugar beet agronomic performance evolution in NW Spain in future scenarios of climate change. Agronomy, 10, 91. https://uvadoc.uva.es/bitstream/handle/10324/52812/Sugar-beet-agronomic-performance.pdf?sequence=1&isAllowed=y
SENAMHI. (2020). Clima. Mapa Climático del Perú. Disponible en https://www.senamhi.gob.pe/?&p=mapa-climatico-del-peru
Shakeel, A., Khan, A.A., Bhat, A.H. & Sayed, S. (2022). Nitrogen fertilizer alleviates root-knot nematode stress in beetroot by suppressing the pathogen while modulating the antioxidant defense system and cell viability of the host. Physiological and Molecular Plant Pathology, 120, 101838. https://www.sciencedirect.com/science/article/abs/pii/S0885576522000534?via%3Dihub
Sherzod, N., Nurbekov, A., Kosimov, M., Gafurova, L., Boulange, J. & Watanabe, H. (2023). Applicability of the AquaCrop model for simulating winter wheat under a semi-arid climate in Uzbekistan. Journal of Arid Land Studies, 33(2), 91-104. https://www.jstage.jst.go.jp/article/jals/33/2/33_91/_article
Stricevic, R., Cosic, M., Djurovic, N., Pejic, B. & Makisivomic, L. (2011). Assessment of the FAO Aqua Crop model in the simulation of rainfed and supplementary irrigated maize, sugar beet and sunflower. Agricultural Water Management, 98(10), 1615-1621. https://www.sciencedirect.com/science/article/abs/pii/S0378377411001193
Tosi, J. (1960). Zonas de vida natural en el Perú. Lima: Ed IICA-OEA. https://books.google.es/books?hl=es&lr=&id=PJYgAQAAIAAJ&oi=fnd&pg=PP8&dq=+Zonas+de+vida+natural+en+el+Per%C3%BA.&ots=yUhUta9oGL&sig=z-RU3WZau_ucen2vtmyblbabK_4#v=onepage&q=Zonas%20de%20vida%20natural%20en%20el%20Per%C3%BA.&f=false
UNESCO. (1977). Un nuevo mapa de la distribución mundial de las regiones áridas. La Naturaleza y sus Recursos, 13(3), 2-3. https://unesdoc.unesco.org/ark:/48223/pf0000264924
Valdivia V., S., Reynoso C., J., Pinna C., J. & Larsen C., E. (2001). Efecto de las sales en la producción de la remolacha azucarera en la costa árida del Perú. Antenor Orrego, 10(16-17), 71 - 80. https://www.researchgate.net/publication/311950920_Efecto_de_las_sales_en_la_produccion_de_la_remolacha_azucarera_en_la_costa_arida_del_Peru
Valdivia V., S, Pinna C., J. & Valdivia S., S. (2022). Balance de fósforo en un suelo salino cultivado con remolacha azucarera (Beta vulgaris L. subsp. vulgaris var. altissima Döll). Cienc. Tecnol. Agropecuaria, 23(3): e2614. https://revistacta.agrosavia.co/index.php/revista/article/view/2614/977
Vamerali, T., Guarise, M., Ganis, A. & Mosca, G. (2009). Effects of water and nitrogen management on fibrous root distribution and turnover in sugar beet. European Journal of Agronomy, 31, 69-76. http://dx.doi.org/10.1016/j.eja.2009.03.005
Zicari, S., Zhang, R. & Kaffka, S. (2019). Sugar beet. In Z. Pan, R. Zhang, and S. Zicari (Eds.), Chapter 13, Integrated processing technologies for food and agricultural by-products (pp. 331-351). Academic Press. https://doi.org/10.1016/C2017-0-00901-1.
Sugar beet planted in a sandy soil used for the experiment comparing the Penman equation with the AquaCrop model.
Published
2024-04-25
How to Cite
Pinna, J., & Rivas, K. (2024). Yield of sugar beet with drip irrigation, with Penman’s equation and AquaCrop model. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 41(2), e244115. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/41978
Section
Crop Production