Identification of the gut bacteria of the greater wax moth

Keywords: Galleria mellonella, plastic, DNA sequencing, microorganisms, Pseudomonas


Throughout the world, the use of industrial polymers derived from fossil fuels is practically inevitable because they have such a wide range of applications; however, the environmental problems arising from this practice have led to a search for alternatives which will allow their use to be reduced, as well as strategies for their control by degradation using biorganic active agents. Insects have been a focus of special interest, as some species consume plastics and may serve to biodegrade them through the action of bacteria in their digestive tracts. In this context, the object of the present study was to characterise bacteria present in the intestine of wax moth larvae (Galleria mellonella). Thirty larvae were subjected to a diet based on polystyrene foam and thirty larvae in natural diet for 7 days. Gastrointestinal tracts were extracted and PCR was run. The results showed the presence of bacterial cells of Carnobacterium maltaromaticum, Brevibacterium sandarakinum, Pseudomonas psychrophila, Pseudomonas sp., Providence sp., Corynebacterium sp. However, the real action of these groups of bacteria in the effective degradation of polymers must be verified.


Download data is not yet available.


Abrusci, C., Pablos, J., Corrales, T., López, J., González, A., Marín, A. & Catalina, F. (2011). Biodegradación por bacterias de filmes de polietileno fotodegradado. Efecto de aditivos pro-oxidantes. Revista de Plásticos Modernos: Ciencia y Tecnología de Polímeros, 660, 99-104.
Agudelo-Londoño, N., Torres-Taborda, M.M., Alvarez-López, C. y Vélez-Acosta, L.M. (2015). Bacteriocinas producidas por bacterias ácido lácticas y su aplicación en la industria de alimentos. Revista Alimentos Hoy, 23, 186-205.
Brandon, A.M., Gao, S.H., Tian, R., Ning, D., Yang, S.S., Zhou, J., Wu, W.M. & Criddle, C.S. (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science & Technology, 52, 6526-6533. doi:
Bombelli, P., Howe, J. & Bertocchini, C. (2017). Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 27(8), 292-293. doi:
Frías, C., Ize, I. & Gavilán, A. (2003). La situación de los envases de plástico en México. Gaceta Ecológica, 69, 67-82.
Geyer, R., Jambeck, J. & Lavender, K. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. DOI: 10.1126/sciadv.1700782
Ghatge, S., Yang, Y., Ahn, J.H. & Hur, H.G. (2020). Biodegradation of polyethylene: a brief review. Applied Biological Chemistry, 63, 27. doi:
Hadad, D., Geresh, S. & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98, 1093-1100. doi: 10.1111/j.1365-2672.2005.02553.x
Huerta, L., Wanga, E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., Van Der Ploeg, M., Besseling, E., Koelmans, A. & Geissen, V. (2016). Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestres (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50, 2685-2691. doi:
Huerta, L., Wanga, E., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V. & Garbeva, P. (2018). Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration. Science of The Total Environment, 624, 753-757. doi:
Kämpfer, P., Schäfer, J., Lodders, N. & Busse, H.J. (2010). Brevibacterium sandarakinum sp. nov., isolated from a wall of an indoor environment. International Journal of Systematic and Evolutionary Microbiology, 60, 909-913. doi: 10.1099/ijs.0.014100-0
Kim, H.R., Lee, H.M., Yu, H.C., Jeon, E., Lee, S., Li, J. & Kim, D.H. (2020). Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (Larvae of Zophobas atratus). Environmental Science & Technology, 54, (11):6987-6996. doi: 10.1021/acs.est.0c01495.
Kong, H. G., Kim, H. H., Chung, J. H., Jun, J. H., Lee, S., Kim, H. M., et al. (2019). The Galleria mellonella hologenome supports microbiota-independent metabolism of long-chain hydrocarbon beeswax. Cell Reports, 26, 2451–2464. doi:
Kumar, S. & Raut, S. (2015). Microbial degradation of low density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering, 3(1), 462-473. doi:
Leisner, J.J., Laursen, B.G., Djamel, H.P. & Dalgaard, P. (2007). Carnobacterium: positive and negative ejects in the environment and in foods. FEMS Microbiology Reviews, 31, 592-613. doi: 10.1111/j.1574-6976.2007.00080.x
Lewin, G.R., Marc, C.C., Horn, H.A., Mcdonald, B.R., Stankey, R.J., Fox, B.G. & Currie, C.R. (2016). Evolution and ecology of Actinobacteria and their bioenergy applications. Annual Review of Microbiology, 70, 235-254. doi: 10.1146/annurev-micro-102215-095748.
Lou, Y., Ekaterina, P., Yang S.S., Lu, B., Liu, B., Ren, N., Corvini, P., & Xing, D. (2020). Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environmental Science & Technology, 54, 2821-2831. doi:
Mason, C.J., Clair, A., Peiffer, M., Gomez, E., Jones, A.G., Felton, G.W. & Hoover, K. (2020). Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE, 15(3), e0229848. doi: 10.1371/journal.pone.0229848
Mukherjee, K., Raju, R., Fischer, R. & Vilcinskas, A. (2013). Galleria mellonella as a model host to study gut microbe homeostasis and brain infection by the human pathogen Listeria monocytogenes. Advances in Biochemical Engineering / Biotechnology, 135, 27-39. doi: 10.1007/10_2013_203
Ng, E., Huerta, E., Eldridge, S., Johnston, P., Hu, H., Geissen, V. & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of The Total Environment, 627, 1377-1388. doi:
Ren, L., Men, L., Zhang, Z., Guan, F., Tian, J., Wang, B., Wang, J., Zhang, Y. & Zhang W. (2019). Biodegradation of polyethylene by Enterobacter sp. D1 from the guts of wax moth Galleria mellonella. International Journal of Environmental Research and Public Health, 16, 1941. doi:10.3390/ijerph16111941.
Rizzi, A., Crotti, E., Borruso, L., Jucker, C., Lupi, D., Colombo, M. & Daffonchio, D. (2013). Characterization of the bacterial community associated with larvae and adults of Anoplophora chinensis collected in Italy by culture and culture-independent methods. BioMed Research International, 2013, 420287. doi: 10.1155/2013/420287
Ruiz, J., Vilanova-Cuevas, B., Alvarez, A., Martín, E., Malizia, A., Galindo-Cardona, A., de Cristóbal, R., Occhionero, M., Chalup, A., Monmany-Garzía, A. & Godoy-Vitorino, F. (2022). The bacterial and fungal gut microbiota of the greater wax moth, Galleria mellonella L. consuming polyethylene and polystyrene. Frontiers in Microbiology, 13, 918861. 861. doi: 10.3389/fmicb.2022.918861
Santo, M., Weitsman, R. & Silvan, A. (2013). The role of the copper-binding enzyme – laccase - in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration & Biodegradation, 84; 204-210.
Shannon, A.L., Attwood, G., Hopcroft, D.H. & Christeller,J.T. (2001). Characterization of lactic acid bacteria in the larval midgut of the keratinophagous lepidopteran, Hofmannophila pseudospretella. Letters in Applied Microbiology, 32, 36-41. doi: 10.1046/j.1472-765x.2001.00854.x
Silva, A.B., Bastos, A.S., Justino, C., Da Costa, J., Duarte, A. & Rocha-Santos, T. (2018). Microplastics in the environment: Challenges in analytical chemistry, A review. Analytica Chimica Acta, 1017; 1-19. doi:
Suzuki, M., Taylor, L. & Delong, E. (2000). Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-Nuclease assays. Applied and Environmental Microbiology, 66(11), 4605-4614. doi:
Torres De La Cruz, M., Cortez, H., Ortiz, C., Cappello, S. y Pérez De La Cruz, M. (2014). Cepas monospóricas de Metarhizium anisopliae y su patogenicidad sobre Galleria mellonella en Tabasco, México. Revista Mexicana de Ciencias Pecuarias, 5(2), 171-180.
Wickramasinghe, N.N., Ravensdale, J., Coorey, R., Chandry, S.P. & Dykes, G.A. (2019). The predominance of psychrotrophic Pseudomonads on aerobically stored chilled red meat. Comprehensive Reviews in Food Science and Food Safety, 18; 1622-1635. doi:
Wilkes, R.A. & Aristilde, L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of Applied Microbiology, 123(3); 582-593. doi: 10.1111/jam.13472
Yang, S.S., Brandon, A., Flanagan, J., Yang, J., Ning, D., Cai, S., Fan, H., Wang, Z., Ren, J., Benbow, E., Ren, N., Wamouth, R., Zhou, J., Criddle, C. & Wu, W. (2017). Biodegradation of de polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor L.): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979-989. doi: 10.1016/j.chemosphere.2017.10.117
Yang, Y., Yang, J., Wu, W., Zhao, J., Song, Y., Gao, L., Yang, R. & Jiang, L. (2015). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science and Technology, 49(20), 12087-12093. doi:
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. & Oda, K. (2016). A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, 351(6278), 1196-1199. doi: 10.1126/science.aad6359
Larva of Galleria mellonella, an insect with the potential to consume styrofoam due to the action of bacteria in its polystyrene foam due to the action of bacteria in its digestive tract
How to Cite
Betancourt, O., Araneda, X., Pesenti, H., & Anabalón, L. (2022). Identification of the gut bacteria of the greater wax moth. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 40(1), e234005. Retrieved from
Crop Production