Influence of pH in the enzymatic hydrolyzate of concentrates from the fishmeal industry
Abstract
The fishmeal concentrate is a byproduct that has an important amount of components useful for the food industry. However, if the fishmeal concentrate is not processed, it could cause an imbalance of the environment in which the waste is discharged. The aim of this research was to evaluate the influence of the pH in the enzymatic hydrolysis of the fishmeal industry for the production of protein concentrates from stickwater as a primary commodity. Thus, the pH values (5,32; 5,94 y 6,33) were examinated, also a proximal analysis to hydrolysate and soluble fish was carried out. In order to determine protein, moisture, fats and ashes the following methods were used, Kjeldhal method for protein, rapid thermobalance method for moisture, Soxhlet methos for fats, and official INEN 0467 method for ashes. Protein concentration analyzes were performed by the Bradford method, and subsequently, the hydrolysis approximation was calculated and the amino acid composition was determined by the reference method Waters UPLC. The results showed that the pH of 6.33 allowed to achieve a better hydrolysis because a higher hydrolysis approximation was obtained, thus also the results obtained from the amino acid composition in the final product demonstrate its potential use as a food additive.
Downloads
References
Babazadeh, M., Soltani, M., Soltani, A. & Asl, M.S. (2014). Production of single cell protein from Stickwater of kilka fish meal factory using Lactobacillus plantarum and Bacillus licheniformis. WALIA Journal, 30(S3), 96–101. https://cutt.ly/jQOKIk8
Baez-Suarez, A.J., Ospina-de-Barreneche, N. y Zapata-Montoya, J.E. (2016). Efecto de temperatura, pH, concentración de sustrato y tipo de enzima en la hidrólisis enzimática de vísceras de Tilapia Roja (Oreochromis spp.). Información Tecnológica, 27(6), 63–76. http://dx.doi.org/10.4067/S0718-07642016000600007
Bhaskar, N., Benila, T., Radha, C. & Lalitha, R.G. (2008). Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology, 99(2), 335–343. https://doi.org/10.1016/j.biortech.2006.12.015
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Granotec. (2017). Granozyme ACC®. Nutrición y Biotecnología para la salud. Guayaquil. Ecuador. https://www.granotec.com.ec/
Han, D., Shan, X., Zhang, W., Chen, Y., Wang, Q., Li, Z. & Mai, K. (2018). A revisit to fishmeal usage and associated consequences in Chinese aquaculture. Reviews in Aquaculture, 10(2), 493-507. https://doi.org/10.1111/raq.12183
IBM Corp. Released 2015. IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp.
Instituto ecuatoriano de normalización – INEN. 1980a. Norma técnica ecuatoriana NTE INEN 0466: Harina de pescado. Determinación de la materia grasa. https://cutt.ly/bQOK0Xe
Instituto ecuatoriano de normalización – INEN. 1980b. Norma técnica ecuatoriana NTE INEN 0467: Harina de pescado. Determinación de las cenizas. https://cutt.ly/SQOK3GZ
Jannathulla, R., Rajaram, V., Kalanjiam, R., Ambasankar, K., Muralidhar, M. & Dayal, J.S. (2019). Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquaculture Research, 50(12), 3493-3506. https://doi.org/10.1111/are.14324
Li, X., Dong, S., Zhang, W., Fan, X., Wang, R., Wang, P. & Su, X. (2019). The occurrence of perfluoroalkyl acids in an important feed material (fishmeal) and its potential risk through the farm-to-fork pathway to humans. Journal of Hazardous Materials, 367, 559-567. https://doi.org/10.1016/j.jhazmat.2018.12.103
Mahdabi, M. & Hosseini-Shekarabi, S.P. (2018). A Comparative Study on Some Functional and Antioxidant Properties of Kilka Meat, Fishmeal, and Stickwater Protein Hydrolysates. Journal of Aquatic Food Product Technology, 27(7), 844–858. https://doi.org/10.1080/10498850.2018.1500503
Nilsang, S., Lertsiri, S., Suphantharika, M. & Assavanig, A. (2005). Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering, 70(4), 571–578. https://doi.org/10.1016/j.jfoodeng.2004.10.011
Norma oficial mexicana. NMX-F-428.1982. Normas Oficial Mexicanas para la determinación de humedad en alimentos.
Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R. & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), 238–242. https://doi.org/10.1016/j.foodchem.2008.12.013
Ovissipour, M., Abedian-Kenari, A., Motamedzadegan, A. & Nazari, R.M. (2012). Optimization of Enzymatic Hydrolysis of Visceral Waste Proteins of Yellowfin Tuna (Thunnus albacares). Food and Bioprocess Technology, 5(2), 696–705. https://doi.org/10.1007/s11947-010-0357-x
See, S.F., Hoo, L.L. & Babji, A.S. (2011). Optimization of enzymatic hydrolysis of salmon (Salmo salar) skin by Alcalase. International Food Research Journal, 18(4), 1359–1365. https://cutt.ly/GQOLHOd
Šližyte, R., Carvajal, A.K., Mozuraityte, R., Aursand, M. & Storrø, I. (2014). Nutritionally rich marine proteins from fresh herring by-products for human consumption. Process Biochemistry, 49(7), 1205–1215. https://doi.org/10.1016/j.procbio.2014.03.012
Souissi, N., Bougatef, A., Triki-Ellouz, Y. & Nasri, M. (2007). Biochemical and functional properties of sardinella (Sardinetta aurita) by-product hydrolysates. Food Technology and Biotechnology, 45(2), 187–194. https://hrcak.srce.hr/27772
Taheri, A., Anvar, S.A.A., Ahari, H. & Fogliano, V. (2013). Comparison the functional properties of protein Hydrolysates from poultry byproducts and rainbow trout (Onchorhynchus mykiss) viscera. Iranian Journal of Fisheries Sciences, 12(1): 154–169. https://cutt.ly/AQOLNqu
Teshima, S., Alam, M.S., Koshio, S., Ishikawa, M. & Kanazawa, A. (2002). Assessment of requirement values for essential amino acids in the prawn, Marsupenaeus japonicus (Bate). Aquaculture Research, 33(6), 395–402. https://doi.org/10.1046/j.1365-2109.2002.00684.x
Waters. (2021). Acquity UPLC H-Class PLUS. UPLC Amino Acid Analysis Solution System Guide. USA.
Wisuthiphaet, N., Kongruang, S. & Chamcheun, C. (2015). Production of Fish Protein Hydrolysates by Acid and Enzymatic Hydrolysis. Journal of Medical and Bioengineering, 4(6), 466–470. https://doi.org/10.12720 / jomb.4.6.466-470
Wu, T. H. & Bechtel, P.J. (2012). Screening for low molecular weight compounds in fish meal solubles by hydrophilic interaction liquid chromatography coupled to mass spectrometry. Food Chemistry, 130(3), 739–745. https://doi.org/10.1016/j.foodchem.2011.05.088
Zapata, J. E., Moya, M. & Figueroa, O.A. (2019). Hidrólisis Enzimática de la Proteína de Vísceras de Trucha Arco Íris (Oncorhynchus mykiss): Efecto del tipo de Enzima, Temperatura, pH y Velocidad de Agitación. Información Tecnológica, 30(6), 63–72. http://dx.doi.org/10.4067/S0718-07642019000600063
Copyright (c) https://creativecommons.org/licenses/by-nc/4.0/
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.