Characterization of rhizospheric bacteria isolated from soil cultivated with sugarcane in Tamaulipas state, Mexico

Keywords: Saccharum officinarum L., Bacillus spp., indole-3-acetic acid (IAA), phosphorus

Abstract

The state of Tamaulipas, Mexico, has two important sugar mills, with plantations of sugarcane (Saccharum officinarum L.) of more than 50 years, the objective of the study was the identification and bacterial characterization in the production of indole-3-acetic acid (IAA), the solubilization of phosphorus and plant growth of bacterial isolates from the rhizosphere of sugarcane. The isolation and morphological characterization were in 30 rhizosphere soil samples of the sugarcane variety CP 72-2086 using the Luria-Bertani media, Congo Red Agar and Potato Dextrose Agar. The molecular characterization was with the 16S rRNA gene and the bacterial inoculation consisted of seedlings of the variety CP 72-2086. 121 strains (38 species) were isolated, being Bacillus sp. most frequently, 14 species were positive for phosphorus solubilization: Bacillus sp. (6), Pseudomonas spp. (5), Paenibacillus (2) Streptomyces venezuelae (1) stand out. The greater phosphorus solubilization was Pseudomonas mediterranea (21.6 mm). Nine bacteria showed production close to 5 ppm IAA: Bacillus aryabhattai (6 ppm), Bacillus pumilus (5.8 ppm) and Ensifer adhaerens (5.6 ppm). Bacillus megaterium showed a higher percentage of chlorophyll and foliar nitrogen. In the present analysis, 38 bacterial species associated with the rhizosphere of the sugarcane variety CP 72-2086 were identified, so these results showed the potential to select native bacteria that have the ability to stimulate plant growth of the variety CP 72-2086.

Downloads

Download data is not yet available.

References

Anand, K., B. Kumari, and M. M. Anwar. 2016. Phosphate solubilizing microbes, an effective and alternative approach as biofertilizers. Int. J. Pharm. Pharm. Sci. 82, 37-40. https://cutt.ly/rnajSSI
Arora, P. K. and H. Bae. 2014. Identification of new metabolites of bacterial transformation of indole by gas chromatography-mass spectrometry and high performance liquid chromatography. Int. J. Anal. Chem. 2014, Article ID 239641, 5 pages, 2014. https://doi.org/10.1155/2014/239641
Ashraf, M., M. Rasool, and M. Mirza. 2011. Nitrogen fixation and indole acetic acid production potential of bacteria isolated from rhizosphere of sugarcane Saccharum officinarum L. Adv. Biol. Res. 56: 348-355. https://cutt.ly/4najF9K
Awais, M., M. Tariq, A. Ali, Q. Ali, A. Khan, B. Tabassum, I. Nasir, and T. Husnain. 2017. Isolation, characterization, and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatal. Agric. Biotechnol. 11: 312-321. https://doi.org/10.1016/j.bcab.2017.07.018
Berkhoff, H. A. and A. C. Vinal. 1986. Congo red medium to distinguish between invasive and non-invasive Escherichia coli pathogenic for poultry. Avian Dis. 301: 117-121. https://cutt.ly/7najJGA
Bhattacharyya, P. N. and D. K. Jha, 2012. Plant growth-promoting rhizobacteria PGPR, emergence in agriculture. World J Microb Biot. 28: 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
Castellanos-González, L., M. Abreus-Jiménez, C. N. Silva-Campos, R. Rivera-Espinosa, I. Fuentes-Romero, E. Parets-Selva, R. de Mello-Prado, and M. Romero. 2016. Efecto de la adición de cachaza, roca fosfórica y biofertilizantes en el suelo sobre el contenido de fósforo y el desarrollo de plántulas de caña de azúcar. Cult. Trop. 374: 145-151. http://dx.doi.org/10.13140/RG.2.2.17308.08324
Castro-Nava, S., J. A. López-Santillán y F. Briones-Encinia. 2010. Retos y perspectivas de la caña de azúcar en Tamaulipas. CienciaUAT. 44: 38-43. https://cutt.ly/JnajZgr
Chen, Y. P., P. D. Rekha, A. B. Arun, F. T. Shen, W. A. Lai and C. C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil. Ecol. 341, 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002
Cordero, J., J. R. de Freitas, and J. J. Germida. 2020. Bacterial microbiome associated with the rhizosphere and root interior of crops in Saskatchewan, Canada. Can. J. Microbiol. 661: 71-85. https://doi.org/10.1139/cjm-2019-0330
Criollo, P. J., M. Obando, L. Sánchez, y R. Bonilla. 2012. Efecto de bacterias promotoras de crecimiento vegetal PGPR asociadas a Pennisetum clandestinum en el altiplano cundiboyacense. Corpoica Cienc. y Tecnol. Agropecu. 13(2): 189-195. https://doi.org/10.21930/rcta.vol13_num2_art:254
de Santi Ferrara, F. I., Z. Machado, H. H. Soto, E. I. Segal and H. Ramos. 2012. Endophytic and rhizospheric Enterobacteria isolated from sugarcane have different potentials for producing plant growth-promoting substances. Plant Soil. 353: 409-417. https://doi.org/10.1007/s11104-011-1042-1
Dhanraj, B. N. 2013. Bacterial diversity in sugarcane Saccharum officinarum L. rhizosphere of saline soil. Int. Res. J. Biol. Sci. 22: 60-64. https://cutt.ly/5nacKSS
Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada y C. W. Robledo. 2019. InfoStat versión 2019. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. https://cutt.ly/InajNsM
Etesami, H., H. A. Alikhani and H. M. Hosseini. 2015. Indole-3-acetic acid IAA production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX. 2: 72-78. https://doi.org/10.1016/j.mex.2015.02.008
Felsenstein, J. 1985. Confidence limits on phylogenies, An approach using the bootstrap. Evolution. 394: 783-791. https://doi.org/10.2307/2408678
Galperin, M. Y. 2013. Genome diversity of spore-forming firmicutes. Microbiol. Spectr.12: TBS-0015-2012. https://doi.org/10.1128/microbiolspectrum.TBS-0015-2012
Gómez, E., Y.Guevara, A. N. San Juan, T. Lemes, M. Pérez and Y. Cutiño. 2019. Efecto del inoculante NITROFIX® sobre el desarrollo radical en tres variedades de caña de azúcar. Cent. Agríc. 464: 61-64. https://cutt.ly/Onakt1s
Hernández-Mendoza, J. L., J. D. Quiroz-Velásquez, J. G. García-Olivares, C. Lizarazo-Ortega, M. C. Martínez-Rodríguez y M. A. Ibarra-Rodríguez. 2018. Análisis económico del uso de biofertilizantes comerciales en el cultivo de sorgo. Rev. Fac. Agron (LUZ). 35(4): 496-513. https://cutt.ly/RnakbeF
Heryania, H. and M. Dharma-Putrab. 2017. Kinetic study and modeling of biosurfactant production using Bacillus sp. Electron. J. Biotechnol. 27: 49-54. https://doi.org/10.1016/j.ejbt.2017.03.005
Kimura, M. A. 1980. Simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. http://dx.doi.org/10.1016/j.dib.2017.05.037
Lee, S., J. O. Ka, and H. G. Song. 2012. Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil. J. Microbiol. 501: 45-49. https://doi.org/10.1007/s12275-012-1415-z
Lim, S. M., M. Y. Yoon, G. J. Choi, Y. H. Choi, K. S. Jang, T. S. Shin, H. W. Park, N. H. Yu, Y. H. Kim and J. C. Kim. 2017. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathol. J. 335: 488-498. https://doi.org/10.5423/PPJ.OA.04.2017.0073
Männistö, M. K., E. Kurhela, M. Tirola and M. M. Häggblom. 2013. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures. FEMS Microbiol. Ecol. 841: 47-59. https://doi.org/10.1111/1574-6941.12035
Massena, V. and K. dos Santos. 2015. Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agricultura. J. Basic Microbiol. 558: 931-949. https://doi.org/10.1002/jobm.201400898
Mohammadi, K. 2012. Phosphorus solubilizing bacteria, occurrence, mechanisms, and their role in crop production. Resources and Environment, 2: 80-85.
Momose, A., N. Ohtake, K. Sueyoshi, T. Sato, Y. Nakanishi, S. Akao and T. Ohyama. 2009. Nitrogen fixation and translocation in young sugarcane Saccharum officinarum L. plants associated with endophytic nitrogen-fixing bacteria. Microbes Environ. 243: 224-230. https://doi.org/10.1264/jsme2.me09105
Morgan, J. A. W., G. D. Bending, and P. J. White. 2005. Biological costs and benefits to plant-microbe interactions in the rhizosphere. J. Exp. Bot. 56(417): 1729-1739. https://doi.org/10.1093/jxb/eri205
Mullis, K. B. and F. A. Faloona. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 155: 335-350. https://doi.org/10.1016/0076-68798755023-6
Naveed, M., S. Mubeen, S. U. khan, I. Ahmed, N. Khalid, H. A. Rasul-Suleria, A. Bano, and A. S. Mumtaz. 2014. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing. Braz. J. Microbiol. 453: 985-993. https://doi.org/10.1590/s1517-83822014000300031
Nopparat, C., M. Jatupornpipat, and A. Rittiboon. 2009. Optimization of the phosphate-solubilizing fungus, Aspergillus japonicus SA22P3406, in solid-state cultivation by response surface methodology. Witthayasan Kasetsat. 435: 172-181. https://cutt.ly/enacb2n
Pisa, G., G. Magnani, H. Weber, E. M. Souza, H. Faoro, R. A. Monteiro, E. Daros, V. Baura, J. P. Bespalhok, F. O. Pedrosa and L. M. Cruz. 2011. Diversity of 16S rRNA genes from bacteria of sugarcane rhizosphere soil. Braz. J. Med. Biol. Res. 4412: 1215-1221. https://doi.org/10.1590/s0100-879x2011007500148
Quecine, M. C., W. L. Araújo, P. B. Rossetto, A. Ferreira, S. Tsui, P. T. Lacava, M. Mondin, J. L. Azevedo, and A. A. Pizzirani-Kleinera. 2012. Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans. Appl. Environ. Microbiol. 7821: 7511-7518. https://doi.org/10.1128/AEM.00836-12
Saharan, B. S. and V. Nehra. 2011. Plant growth promoting rhizobacteria, A critical review. LSMR. 1-30. https://cutt.ly/HnaxyPZ
Serna-Cock, L., C. Arias-García and L. J. Valencia Hernández. 2011. Efecto de la biofertilización sobre el crecimiento en maceta de plantas de caña de azúcar Saccharum officinarum L. Biotecnol. sector agropecuario agroind. 92: 85-95. https://cutt.ly/gnavuV8
Sharma S. B., Sayyed, R. Z., Trivedi, M. H. and Gobi, T. A. 2013. Phosphate solubilizing microbes, sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus. 2: 587. https://cutt.ly/0nalT8X
Solanki, M. K., Z. Wang, F. Y. Wang, Ch. N. Li, T. J. Lan, R. K. Singh, P. Singh, L. T. Yang and Y. R. Li, 2017. Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic bacteria. Sugar Tech. 19: 136-147. https://doi.org/10.1007/s12355-016-0445-y
Souza, A. K. 2016. Bactérias promotoras de crescimento de plantas associadas à diferentes doses de fertilização nitrogenada na cultura do trigo. Dissertação Mestrado em Agronomia - Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon. 59 p. https://cutt.ly/VnalOhk
Swanson, K. M., R. L. Petran, and J. H. Hanlin. 2001. Culture methods for enumeration of microorganisms”. In: Compendium of methods for the microbiological examination of foods. 4th ed. Downs, F. P. and Ito, K. Eds. APHA. Washington. 53-67.
Torriente, D. 2010. Aplicación de bacterias promotoras de crecimiento vegetal en el cultivo de la caña de azúcar. Perspectivas de su uso en Cuba. Cult. Trop. 311: 19-26. https://cutt.ly/ynalAED
Published
2021-10-01
How to Cite
García Olivares, J. G., Reyes Lara, M. A., Flores Gracía, J., Quiroz Velásquez, J. D. C., García León, I., Reyes Hernández, J., & Gill Langarica, H. R. (2021). Characterization of rhizospheric bacteria isolated from soil cultivated with sugarcane in Tamaulipas state, Mexico. Revista De La Facultad De Agronomía De La Universidad Del Zulia, 38(4), 951-969. Retrieved from https://produccioncientificaluz.org/index.php/agronomia/article/view/36804
Section
Crop Production