Aislamiento de proteínas de residuos de exoesqueletos de cangrejos como materia prima para uso nutricional / Isolation of proteins from crabs exoskeletons residues as raw material of nutritional use for balanced food
Abstract
Resumen
Los residuos agroindustriales son un nuevo medio para la obtención de proteínas que puedan ser empleados en la formulación de alimentos. En este trabajo se realizó el aislamiento de las proteínas por tratamiento de los exoesqueletos del cangrejo azul Callinectes sapidus usando seis (6) métodos termoquímicos. En los extractos obtenidos las proteínas se aislaron, purificaron y analizaron con la finalidad de conocer su valor nutricional, presentando adecuados niveles de proteínas asociadas (65,0 a 197,8 g.kg-1). La recuperación de las proteínas se realizó aplicando tres métodos químicos obteniendo un alto rendimiento (94,90 ± 3,37%) al combinar el efecto de (NH4)2SO4 (65 %m/v) y etanol (30 %v/v) a pH 6,5 en un tiempo de 30 minutos. La alta solubilidad de las proteínas recuperadas (87,96 ± 2,18%) y su perfil de aminoácidos esenciales y no esenciales indican que este biopolímero tiene potencial para la preparación de productos alimenticios.
Abstract
Agroindustrial waste is a new medium for the production of proteins that can be used in food formulation. In this work, isolation of the proteins from Callinectes sapidus blue crab exoskeletons by the treatment using six (6) thermochemical methods was performed. In the obtained extracts the proteins were isolated, purified and analyzed in order to know the nutritional value of these, achieving good levels of associated proteins (65.0 a 197.8 g/kg). Protein recovery was performed by applying three chemical methods obtaining a high yield (94.90 ± 3.37%) combining the effect of (NH4)2SO4 (65% m/v) y ethanol (30% v/v) in 30 minutes. The high solubility of the recovered proteins (87.96 ± 2.18%) and their amino acid profile of essential and non-essential indicate that this biopolymer has potential in the preparation of food products.Downloads
References
Agulló E., M. S. Rodríguez, R. Matos. 2004. Quitina y Quitosano: obtención, caracterización y aplicaciones. Pontificia Universidad Católica del Perú, Fondo Editorial, Perú. 2004. 312 p.
Bourtoom, T., M.S. Chinnan, P. Jantawat, R. Sanguandeekul. 2009. Recovery and characterization of proteins precipitated from surimi wash-water. LWT Food Science Technol. 42: 599-605.
Chen, P., A. Yu-Min, J. McKittrick, M. Meyers. 2008. Structure and mechanical properties of crab exoskeletons. Acta Biomater. 4(3): 587-596.
Chutipongtanate, S., K. Watcharatanyatip, T. Homvises, K. Jaturongkakul, V. Thongboonkerd. 2012. Systematic comparisons of various spectrophotometric and colorimetric methods to measure concentrations of protein, peptide and aminoacid: Detectable limits, linear dynamic ranges, interferences, practicality and unit costs. Talanta. 98: 123-129.
Giraud-Guille, M. 1984. Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell. 16(1): 75-92.
Ian, M. Rosenberg. 2005. Protein Analysis and Purification. 2º ed. Birkhauser, Boston, USA.
Nishioka, F., Shimizu, Y. 1983. Recovery of proteins from washing of minced fish meat by pH-shifting method. Bulletin Japanese Soc. Sci. Fisheries. 49: 795-800.
Rosenberg I. M. 2005. “Protein Analysis and Purification: Benchtop Techniques”. 2º ed. Birkhauser, Boston, USA. 520 p.
Vilasoa, M., J. López, M. Lage. 2007. Protein and amino acid contents in the crab, Chionoecetes opilio. Food. Chem. 103: 1330-1336.
Wu, Y. V., G. E. Inglett. 1974. Denaturation of plant proteins related to functionality and food applications: A review. J. Food Science. 39: 218-223.