Study of Time and Frequency Immersion in the in vitro Multiplication of Paulownia Elongata S.Y.Hu.

Keywords: Micropropagation, Multiplication coefficient, Paulownia, Temporary immersion systems

Abstract

Most of the commercial clones of paulownia are micropropagated and nowadays micropropagation techniques are being investigated to reduce the costs of vitroplants, such as cultivation in temporary immersion systems, which have proven to be highly efficient for the in vitro multiplication of many species. The time and frequency of immersion in temporary immersion systems are the main parameters that determine their efficiency, which is why in this research it was proposed to study the time and frequency in the in vitro multiplication of Paulownia elongata S.Y.Hu in Automated Temporary Immersion Vessels (RITA®). A factorial experiment was conducted to determine the frequency (every 6 and 8 h) and time (1 and 2 min) of immersion, with five replicates per treatment and 12 paulownia microshoots per replicate. After two subcultures of 30 days each, it was found that the combination of a frequency of immersion every 8 h and 1 min of immersion allowed obtaining the highest number of nodes (8.6) and multiplication coefficient (10.0). The highest values of number of shoots (2.26) were achieved with the frequency every 6 h, independently of the immersion time and the length of the shoots was not affected by the variables studied. It is concluded that time and frequency of immersion were determinant in increasing in vitro multiplication of P. elongata in RITA®.

Downloads

Download data is not yet available.

Author Biographies

Jorge Alberto Vílchez-Perozo, University of Zulia, Venezuela

Department of Botany, Faculty of Agronomy, University of Zulia, Maracaibo-Venezuela.

Nilca Rosa Albany de Vílchez, University of Zulia, Venezuela.

Department of Chemistry, Faculty of Agronomy, University of Zulia, Maracaibo-Venezuela.

References

Dolcet-Sanjuan, R., Casanovas, M., Franquesa, S., Alsina, E., Carrasco-Cuello, F., Torres, E.Torres, Rufat J. & Teixido, N. (2024). GreenTray®, a TIS Bioreactor for Plant Micropropagation and Abiotic or Biotic Stress Bioassays. Preprints.org https://doi.org/10.20944/preprints202404.0793.v1

Aragón, C.E., Sánchez, C., Gonzalez-Olmedo, J., Escalona M., Carvalho, L. & Amâncio, S. (2014). Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biologia Plantarum, 58, 29–38. https://doi.org/10.1007/s10535-013-0381-6

Bello-Bello, J.J., Cruz-Cruz, C.A. & Pérez-Guerra, J.C. (2019). A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine).  In Vitro Cellular & Developmental Biology-Plant, 55, 313–320. https://doi.org/10.1007/s11627-019-09973-7

Berthouly, M. & Etienne, H. (2005). Temporary immersion system: a new concept for use liquid medium in mass propagation. In A.K., Hvoslef-Eide & W. Preil, (Eds) Liquid Culture Systems for in vitro Plant Propagation (pp. 165-195). Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_11

Bing, L., Yun-Hong, T., Liu, S., Olmstead, R., Min, D.Z., Chen, Z.D., Joshee, N., Vaidya, B., Chung, R. & Li, B. (2019). Phylogenetic relationships of Cyrtandromoea and Wightia revisited: a new tribe in Phrymaceae and a new family in Lamiales. Journal of Systematics and Evolution, 58 (1), 1–17. https://doi.org/10.1111/jse.12513

Bouman, H.& Tiekstra, A. (2005). Adaptions of the mineral composition of tissue culture media on the basis of plant elemental analysis and composition of hydroponic substrates. In A.K. Hvoslef-Eide & W. Preil (Eds), Liquid Culture Systems for in vitro Plant Propagation (pp. 493-505). Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_37

Cárdenas Rubio, A. M. (2015). Validación y desarrollo de una tecnología para la multiplicación in vitro de Paulownia elongata, Paulownia fortunei y un híbrido (P. fortunei x P. elongata) bajo sistemas de propagación convencional e inmersión temporal (Bachelor's thesis, Universidad Politécnica Salesiana). http://dspace.ups.edu.ec/handle/123456789/8735

Corrêa, C. A., da Cunha, A. B., dos Santos, Â. S., Tambosi, J. L., & Rios, P. D. A. (2024). Propriedades físicas e mecânicas da madeira de Paulownia fortunei (Seem.) Hemsl. var. Mikado crescendo no Sul do Brasil. Observatório De La Economía Latinoamericana, 22(2), e3384. https://doi.org/10.55905/oelv22n2-188

Etienne, H., Berthouly, M. (2002). Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture 69, 215–231. https://doi.org/10.1023/A:1015668610465

Fokina, A., Satarova, T., Denysiuk, K., Kharytonov, M., Babenko, M., & Rula, I. (2020). Biotechnological approaches to Paulownia in vitro propagation and in vivo adaptation. Scientific Bulletin Series F. Biotechnologies, 24(1), 167-172. https://www.biotechnologyjournal.usamv.ro/pdf/2020/issue_1/Art23.pdf

Georgiev, V., Schumann, A., Pavlov, A., & Bley, T. (2014). Temporary immersion systems in plant biotechnology. Engineering in life sciences, 14(6), 607-621. https://doi.org/10.1002/elsc.201300166

Jakubowski, M. (2022). Cultivation Potential and Uses of Paulownia Wood: A Review. Forests, 13, 668. https://doi.org/10.3390/f13050668

Maene L., & Debergh P. (1985) Liquid medium additions to established tissue cultures to improve elongation and rooting in vitro. Plant Cell Tissue Organ Cult 5, 23–33. https://doi.org/10.1007/BF00033566

Mendoza C., Dolcet-Sanjuan R., Orellana M., López M., Vargas M. & Rivera D., (2022). Micropropagación de Agave marmorata utilizando un nuevo Sistema de Inmersión Temporal. Revista Ciencia, Tecnología y Sociedad, 10(1), 10-16. https://static1.squarespace.com/static/55564587e4b0d1d3fb1eda6b/t/632b7c1eed29414555cff135/1663794207231/MendozaMoralesCarlosRolando-CTSV2N12022-10-16.pdf.

Murashige, T., & Skoog, F. (1962) A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Plant Physiology, 15, 473-497.
https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Poșta, D. S., Rózsa, S., Gocan, T. M., & Cântar, I. C. (2022). Research on seed germination stimulation at Paulownia tomentosa Thunb. Steud. Current Trends in Natural Sciences, 11(22), 231-239. https://doi.org/10.47068/ctns.2022.v11i22.027

Preil, W. (2005). General introduction: a personal reflection on the use of liquid media for in vitro culture. In A.K. Hvoslef-Eide & W.Preil (Eds.), Liquid Culture Systems for in vitro Plant Propagation (pp. 1-18). Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_1

Rodríguez-Seoane, P., Del Pozo, C., Puy, N., Bartrolí, J., & Domínguez, H. (2021). Hydrothermal Extraction of Valuable Components from Leaves and Petioles from Paulownia elongata x fortunei. Waste Biomass Valor 12, 4525–4535. https://doi.org/10.1007/s12649-020-01298-6

Rodríguez-Seoanea, P., Díaz-Reinosob, B., Moure A., & Dominguez H. (2020). Potential of Paulownia sp. for biorefinery. Industrial Crops and Products, 155, 112739. https://doi.org/10.1016/j.indcrop.2020.112739

Sedighizadeh, P., Moradpour, P., & Hosseinabadi, H.Z. (2023). Possibility of making flexible three-ply plywood using poplar (Populus deltoides) and Paulownia (Paulownia fortunei) veneers. European Journal of Wood and Wood Products, 81, 209–221. https://doi.org/10.1007/s00107-022-01857-9

Shaaban A., Salem H., Abo Sneena M., & Abughnia, E. (2022). Micropropagation of Paulownia elongata tree through plant tissue culture technology. Scientific Journal for Faculty of Science-Sirte University, 2(2), 73-79. https://doi.org/10.37375/issn.2789-858X

Sokal, R. & Rohlf, F. (2013). Biometry: The Principles and Practice of Statistics in Biological Research. W.H. Freeman and Company, New York. https://www.researchgate.net/publication/44554870_Biometry_the_principles_and_practice_of_statistics_in_biological_research_Robert_R_Sokal_and_F_James_Rohlf#fullTextFileContent

Statistix 8. (2003). Statistix 8: Analytical Software User’s Manual. Tallahassee, Florida, U.S.A

Stewart, W.M., Vaidya, B.N., Mahapatra, A.K., Terrill, T.H., Joshee, N., (2018). Potential use of multipurpose Paulownia elongata tree as an animal feed resource. American Journal of Plant Sciences, 9, 1212–1227. https://doi.org/10.4236/ajps.2018.96090

Testa, R., Schifani, G., Rizzo, G., & Migliore, G. (2022). Assessing the economic profitability of Paulownia as a biomass crop in Southern Mediterranean area. Journal of Cleaner Production, 336, 130426. https://doi.org/10.1016/j.jclepro.2022.130426
Published
2025-01-05
How to Cite
Vílchez-Perozo, J. A., & Albany de Vílchez, N. R. (2025). Study of Time and Frequency Immersion in the in vitro Multiplication of Paulownia Elongata S.Y.Hu. Journal of the University of Zulia , 16(45), 110-119. https://doi.org/10.5281/zenodo.14602220